摘要
为探究饲料中添加桑叶水提物(Mulberry leaf water extract, MLWE)对罗氏沼虾幼虾生长性能、肝胰腺免疫指标、抗氧化能力及肠道健康的影响,以不添加桑叶水提物的基础饲料为对照组(MLWE0),在此基础上分别添加3 g/kg(MLWE3组)、6 g/kg(MLWE6组)、9 g/kg(MLWE9组)和12 g/kg (MLWE12组)的桑叶水提物来配置5组等氮等脂的实验饲料。选取初始体质量为(0.75±0.09)g健康活泼罗氏沼虾幼虾为研究对象,每个实验组设置3个重复,试验周期为56 d。结果显示:与对照组相比,MLWE6、MLWE9和MLWE12组特定生长率和增重率显著升高(P<0.05),而饲料系数显著下降 (P>0.05)。与对照组相比,MLWE3、MLWE6和MLWE9组的幼虾肠道肌肉层厚度减少,肠道皱襞的高度和宽度增加。与对照组相比,各实验组中幼虾肝胰腺组织中丙二醛(Malondialdehyde,MDA)含量、超氧化物歧化酶(Superoxide dismutase,SOD)活力、过氧化氢酶(Catalase,CAT)活力、谷胱氨酸过氧化物酶(Glutathione peroxidase,GSH-Px)活力均显著减少(P<0.05)。MLWE6和MLWE9组幼虾肝胰腺中免疫相关基因表达量显著高于对照组(P<0.05)。与对照组相比,MLWE6、MLWE9和MLWE12组中幼虾肠道菌群中的致病菌(如嗜水气单胞菌、霍乱弧菌)相对丰度显著降低(P<0.05)。由此可见,在罗氏沼虾幼虾饲料中添加适宜浓度的桑叶水提物可促进罗氏沼虾幼虾生长,提高其非特异性免疫力并改善肠道健康。综合分析及以增重率为指标,建议罗氏沼虾幼虾饲料中桑叶水提物的适宜添加水平为6~9 g/kg。
罗氏沼虾(Macrobrachium rosenbergii)隶属于节肢动物门(Arthropoda)甲壳纲(Crustacea)十足目(Decapoda)长臂虾科(Palaemonidae)沼虾属(Macrobrachium)。罗氏沼虾素有淡水虾王之称,它具有食性广泛、肉质营养丰富、养殖周期短等优
桑叶(Morus alba L.),是桑科植物桑的叶子,又被称为家桑、黄桑叶等,是我国种植历史悠久、具有多种药效价值的草药原
本试验旨在探究罗氏沼虾配合饲料中桑叶水提物的适宜添加量,评估饲料中添加桑叶水提物对罗氏沼虾幼虾生长性能、肠道健康及免疫机能的影响,为桑叶水提物在罗氏沼虾幼虾配合饲料中的合理应用提供理论参考。
将采摘的新鲜桑叶洗净晒干后粉碎, 过60目筛网得到桑叶粉,按照周东来
以进口鱼粉、豆粕和菜粕作为主要的蛋白源,以豆油、鱼油和大豆卵磷脂作为主要的脂肪源,配置罗氏沼虾基础实验饲料,在基础饲料中添加0 g/kg (MLWE 0)、3 g/kg (MLWE3组)、6 g/kg (MLWE6组)、9 g/kg (MLWE9组)和12 g/kg(MLWE12组)的桑叶水提物,制成5种等氮等脂的罗氏沼虾配合饲料(
原料 Ingredients | 组别 Groups | ||||
---|---|---|---|---|---|
MLWE0 | MLWE3 | MLWE 6 | MLWE9 | MLWE12 | |
进口鱼粉 Imported fish meal | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
小麦面粉 Wheat flour | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
豆粕 Soybean meal | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
菜籽粕 Rapeseed meal | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
磷虾粉 Krill meal | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
微晶纤维素 Microcrystalline cellulose | 5.00 | 4.70 | 4.40 | 4.10 | 3.80 |
豆油 Soybean oil | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
鱼油 Fish oil | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
大豆卵磷脂 Soybean lecithin | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
胆固醇 Cholesterol | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
脱壳素 Molting hormone | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
氯化胆碱 Choline chloride | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
维生素预混料 Vitamin premi | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
矿物预混料 Mineral premi | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
磷酸二氢钙 Ca(H2PO4) | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
黏结剂 Binder | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
桑叶水提物 Mulberry leaf water extract | 0.30 | 0.60 | 0.90 | 1.20 | |
营养水平 Nutrient levels | |||||
粗蛋白质 Crude protein | 39.36 | 39.21 | 39.88 | 39.42 | 39.17 |
粗脂肪 Crude lipid | 7.83 | 7.85 | 7.66 | 7.54 | 7.93 |
水分 Moisture | 11.65 | 11.25 | 11.88 | 11.51 | 11.08 |
粗灰分 Crude ash | 10.42 | 10.44 | 10.50 | 10.32 | 10.36 |
注: 1. 维生素预混料为每千克饲料提供: VA 1.5 g, VB1 1.3 g, VB2 2.0 g, VB6 2.4 g, VB12 0.8 g, VC 40.0 g, VD3 0.5 g, VK3 3.5 g, 烟酰胺 3.6 g, D-泛酸钙3.3 g, 叶酸0.4 g, D-生物素0.8 g, 肌醇12.5 g。2. 矿物质预混料为每千克饲料提供: CuSO4·5H2O 10 g, FeSO4·7H2O 66.7 g, MnSO4·4H2O 9.4 g, ZnSO4·7H2O 34.8 g, MgSO4·7H2O 150 g, KCl 23.6 g, Na2SeO3 4.5 g, CaH4I2O6 6.5 g, CoSO4·7H2O 1.7 g, 沸石粉352.8 g。
Notes: 1. Vitamin premix provided the following per kg of diets: VA 1.5 g, VB1 1.3 g, VB2 2.0 g, VB6 2.4 g, VB12 0.8 g, VC 40.0 g, VD3 0.5 g, VK3 3.5 g, nicotinamide 3.6 g, D-calcium pantothenate 3.3 g, folic acid 0.4 g, D-biotin 0.8 g, inositol 12.5 g. 2.Mineral premix provided the following per kg of diets: CuSO4·5H2O 10 g, FeSO4·7H2O 66.7 g, MnSO4·4H2O 9.4 g, ZnSO4·7H2O 34.8 g, MgSO4·7H2O 150 g, KCl 23.6 g, Na2SeO3 4.5 g, CaH4I2O6 6.5 g, CoSO4·7H2O 1.7 g, zeolite powder 352.8 g.
试验用罗氏沼虾幼虾购自海南汇鑫苗种有限公司,试验用虾在中国水产科学研究院南海水产研究所养殖车间暂养14 d,使其适应养殖环境。在暂养期间,以不含有桑叶水提物添加的基础饲料进行投喂,并于实验开始前停止进食24 h。挑选大小均匀、健康活泼、初始体质量为(0.75±0.09)g的罗氏沼虾幼虾300尾,将其分成5个实验组分别饲喂基础饲料和4种实验饲料,每组设置3个重复,每个重复20尾幼虾,共计15个循环水养殖玻璃缸。实验周期为56 d,实验期间,投喂后1 h清除缸底部残留的饲料和粪便,保持氨氮<0.2 mg/L,亚硝酸盐<0.05 mg/L,溶氧>6.5mg/L,水温27~29 ℃,pH为7.7~8.2,采用自然光照。试验期间每天投喂饲料3次(08:00、13:00和18:00),投喂量为罗氏沼虾幼虾体质量的6%~8%。
采样前对罗氏沼虾禁食24 h,以每个重复的养殖玻璃缸为统计单位进行称重计量。从每个组中随机选取6尾虾,在无菌解剖盘上分离其肠道组织,置于2 mL冻存管中,其中3只虾肠道组织分别用2.5%的戊二醛溶液和4%的多聚甲醛溶液固定后用于电镜和光镜检测,另外3只虾的肠道装入5 mL无菌离心管中,置于液氮中速冻后于-80 ℃保存,用于肠道微生物16S rDNA测序。从每组中随机选取3尾虾,在无菌解剖盘上分离其肝胰腺组织,置于2 mL冻存管中,-80 ℃冰箱保存用于免疫基因表达与抗氧化指标检测。
根据幼虾体质量和摄食饲料量等指标,计算幼虾生长性能和饲料利用能力。增重率(Weight gain rate,WGR)、特定生长率(Specific growth rate,SGR)、饲料系数(Feed conversion ratio,FCR)、存活率(Survival rate, SR)按下列公式计算:
RSG=(lnWt - lnW0)/t×100 | (1) |
RWG=(Wt - W0)/W0 ×100 | (2) |
RFC=(T - S)/(Wt - W0) ×100 | (3) |
式中: RSG为特定生长率;RWG为增重率;RFC为饲料系数;W0、Wt分别为实验幼虾初始体质量和终末体质量;T、S分别为总饲料量和剩余饲料量;t为实验天数。
采用分析化学家协会(Association of official analytical chemists,AOAC)的标准程序对饲料原料、饲料成品和罗氏沼虾幼虾肌肉成分的营养水平进行测定。测定时,将待测样品破碎研磨成粉状,置于105 ℃烘箱中烘干48 h,再称重以计算水分含量,使用凯氏定氮法测定粗蛋白质含量(GB 5009.5—2016),采用索氏抽提法测定粗脂肪含量(GB/T 6433—2006),粗灰分含量则采用马弗炉煅烧法进行测定。取0.20 g肝胰腺组织放于匀浆管中,加入9倍体积的生理盐水,在冰浴条件下4 000 r/min匀浆2 min,4 ℃ 3 500 r/min离心15 min,取上清液。肝胰腺总蛋白(Total protein,TP)、丙二醛(Malondialdehyde,MDA)、超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化氢酶(Catalase,CAT)、谷胱甘肽过氧化物酶(Glutathione peroxidase,GSH-Px)测定均使用南京建成生物工程研究所生产的试剂盒,具体测定方法参照试剂盒说明书。
固定好的肠道样品经乙醇梯度脱水,二甲苯透明,处理好的组织按常规石蜡包埋组织的制备流程进行制备,制成4 μm的石蜡切片。切片再经脱水、透明、封固, 使用荧光显微镜(Nikon Eclipse Ci-L, H550S)观察拍
使用Trizol法提取罗氏沼虾幼虾肝胰腺组织中的总RNA,RNA的质量和纯度测定分别采用1%琼脂糖凝胶电泳和分光光度法,将提取质量较好的RNA使用Hifai
引物 Primer | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Toll | TTCGTGACTTGTCGGCTCTC | GCAGTTGTTGAAGGCATCGG |
Imd | CCACTCCGACCACATTCTCC | ATTGAAGACGGCGCCTATGT |
Relish | CTCCTTCAGCCAGACAAT | CTCAACAACCGTACCCTAA |
ALF1 | GGAAGGCAGACATTGGACC | GCAGACGCAGAAGGAAGG |
ALF3 | GAAAGCCTTCCAGTCCG | TGATTGTGCCGTTGAGTAA |
MYD88 | GAGTCATGTCAGGCCTACGA | CACAGCTAGACCCCTCCAAT |
Dorsal | TCAGTAGCGACACCATGCAG | CGAGCCTTCGAGGAACACTT |
LZM | TAGGCGAGTCTCCGTTGTCTGTAG | GAAGAAGAGTCCACCACCCAAGAAC |
β-actin | TCCGTAAGGACCTGTATGCC | TCGGGAGGTGCGATGATTTT |
对各样本肠道菌群总DNA进行16S rDNA的V3-V4高变区的PCR扩
对测序获得的双端序列数据进行质控处理。根据PE reads之间的Overlap关系,利用FLASH(v1.2.7)将每个样品的reads拼接成原始Tags数据。采用Trimmomatic (v0.33)软件,对原始Tags数据进行过滤得到优质序列。通过UCHIME(v4.2)比对去除序列的嵌合体以获得有效序列。基于QIIME(v18.0)软件, 利用UCLUST对序列相似度≥97%的全部tags进行聚类形成OTUs(Operational taxonomic units,OTUs),所有数据均在数据库Silva(https://www. arb-silva.de/)中对其进行分类学注释, 绘制不同生物分类水平上的肠道菌群相对丰度和组成结
如
生长性能 Growth performance | 实验处理组 Experimental treatment groups | ||||
---|---|---|---|---|---|
MLWE0 | MLWE3 | MLWE6 | MLWE9 | MLWE12 | |
初始体质量 IBM/g | 0.75±0.09 | 0.75±0.09 | 0.75±0.09 | 0.75±0.09 | 0.75±0.09 |
终末体质量 FBM/g |
6.68±0.7 |
6.58±0.5 |
7.38±0.6 |
7.48±0.3 |
7.80±0.3 |
特定生长率 SGR/(%/d) |
3.90±0.1 |
3.87±0.1 |
4.08±0.1 |
4.11±0.0 |
4.18±0.0 |
增重率 WGR/% |
790.67±95.8 |
777.33±66.2 |
884.00±80.7 |
897.34±43.6 |
940.00±45.2 |
饲料系数 FCR |
1.57±0.2 |
1.45±0.2 |
1.26±0.0 |
1.20±0.2 |
1.22±0.0 |
注: 同行数据肩标无字母或相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。
Notes: In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).
由

图1 饲料中添加桑叶水提物对罗氏沼虾幼虾肠道组织结构的影响
Fig.1 Effect of dietary mulberry leaf water extract on intestinal structure in juvenile M. rosenbergii
肠道显微照片中箭头表达:红色为肌肉层厚度,橙色为皱襞高度,绿色为皱襞宽度;1-5分别为MLWE0、MLWE3、MLWE6、MLWE9和MLWE12组。
Arrows in the micrograph of the intestine are expressed as: red is muscular thickness, orange is fold height, and green is fold width; 1-5 refer to groups MLWE0, MLWE3, MLWE6, MLWE9 and MLWE12.

图2 饲料中添加桑叶水提物对罗氏沼虾幼虾肠道微绒毛形态的影响
Fig.2 Effect of dietary mulberry leaf water extract on intestinal microvilli morphology in juvenile M. rosenbergii
肠道显微照片中箭头表达:黄色为微绒毛长度;1-5 分别为MLWE0、MLWE3、MLWE6、MLWE9和MLWE12组。
Arrows in the micrograph of the intestine are expressed as: yellow is microvillus length; 1-5 refer to groups MLWE0, MLWE3, MLWE6, MLWE9 and MLWE12.
如
指标 Parameters | 组别 Groups | ||||
---|---|---|---|---|---|
MLWE0 | MLWE3 | MLWE6 | MLWE9 | MLWE12 | |
丙二醛MDA/(nmol/mg prot) |
49.98±1.2 |
30.32±1.4 |
33.12±0.0 |
24.43±0.7 |
21.61±1.2 |
超氧化物歧化酶 SOD/(U/mg prot) |
7.89±0.4 |
3.61±0.2 |
3.25±0.1 |
4.16±0.5 |
4.14±0.3 |
过氧化氢酶 CAT/(U/mg prot) |
1.16±0.0 |
0.55±0.0 |
0.46±0.0 |
0.58±0.0 |
0.61±0.0 |
谷胱甘肽过氧化物酶 GSH-Px/(U/L) |
82.26±1.6 |
32.89±2.2 |
25.33±0.9 |
50.43±4.6 |
57.79±1.6 |
注: 同行数据肩标无字母或相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。
Notes: In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).
由

图3 饲料中添加桑叶水提物对罗氏沼虾幼虾肠道免疫相关基因表达水平的影响
Fig.3 Effect of dietary mulberry leaf water extract on intestinal immune-related gene expression in juvenile M. rosenbergii
如
指标 Parameters | 组别 Groups | ||||
---|---|---|---|---|---|
MLWE0 | MLWE3 | MLWE6 | MLWE9 | MLWE12 | |
Chao 1 | 2 173.54±219.28 | 2 048.21±81.27 | 1 992.47±205.65 | 2 233.13±233.09 | 1 919.36±274.42 |
ACE | 2 474.87±279.06 | 2 299.88±116.11 | 2 129.20±242.28 | 2 622.35±305.78 | 2 554.54±777.81 |
Shannon | 4.37±0.17 | 4.31±0.10 | 4.08±0.46 | 4.02±0.67 | 3.79±0.33 |
Simpson | 0.94±0.01 | 0.94±0.01 | 0.91±0.05 | 0.91±0.08 | 0.90±0.04 |
注: 同行数据肩标无字母或相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。
Notes: In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).

图4 罗氏沼虾幼虾肠道菌群OTUs的韦恩图
Fig.4 Venn diagram of intestinal microbiota in juvenile M. rosenbergii
由

图5 罗氏沼虾幼虾肠道菌群β多样性的PCoA分析(n=5)
Fig.5 PCoA analysis of β diversity of intestinal microbes in the juvenile M. rosenbergii (n=5)

图6 饲料中添加桑叶水提物对罗氏沼虾幼虾肠道菌群主要组成相对丰度(门水平)的影响
Fig.6 Effect of dietary mulberry leaf water extract on relative abundance of major bacteria in juvenile M. rosenbergii (phylum level)

图7 饲料中添加桑叶水提物对罗氏沼虾幼虾肠道菌群主要组成相对丰度(属水平)的影响
Fig.7 Effect of dietary mulberry leaf water extract on relative abundance of major bacteria in juvenile M. rosenbergii (genus level)
指标 Parameters | 组别 Groups | ||||
---|---|---|---|---|---|
MLWE0 | MLWE3 | MLWE6 | MLWE9 | MLWE12 | |
嗜水气单胞菌Aeromonas hydrophila |
0.017±0.00 |
0.019±0.00 |
0.002±0.00 |
0.001±0.00 |
0.002± |
霍乱弧菌 Vibrio cholerae |
0.033±0.00 |
0.001±0.00 |
0± |
0± |
0± |
金黄色葡萄球菌 Staphylococcus aureus | 0±0 | 0.002±0 | 0.002±0.001 | 0±0 | 0±0 |
注: 同行数据肩标无字母或相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。
Notes: In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).
本实验结果显示饲料中添加桑叶水提物显著提高了罗氏沼虾幼虾生长性能和饲料效率。陈
水产动物的肠道不仅起着消化和吸收营养物质的重要作用,还承担维持机体内部环境稳定的职
MDA是细胞膜脂质过氧化的最终产物,通过测定其含量能够间接反映脂质过氧化反应的程
甲壳动物大多利用先天免疫系统进行自我防御,其中包含体液免疫和细胞免疫。体液免疫包含对微生物的识别、信号转导(如Toll通路、IMD通路)以及免疫效应物的产
目前,关于虾类肠道核心菌群的研究已有相继报道,GAO
肠道内菌群结构与肠道健康密切相关,肠道菌群不仅参与消化吸收过程,还有助于抵御外来细菌入侵机体,发挥着生物屏障的作
综上所述,在罗氏沼虾幼虾饲料中添加适量的桑叶水提物,可有效提高罗氏沼虾幼虾生长性能,提高机体的抗氧化能力,促进肠道健康。在本试验条件下,以幼虾增重率和免疫相关基因表达量为指标,罗氏沼虾幼虾饲料中桑叶水提物的适宜添加水平为6~9 g/kg。
利益冲突
作者声明本文无利益冲突
参考文献
KAWAMURA G, BAGARINAO T, YONG A S K, et al. Colour preference and colour vision of the larvae of the giant freshwater prawn Macrobrachium rosenbergii[J]. Journal of Experimental Marine Biology and Ecology, 2016, 474: 67-72. [百度学术]
ZHOU D D, LIU S S, GUO G Y, et al. Virome analysis of normal and growth retardation disease-affected Macrobrachium rosenbergii[J]. Microbiology Spectrum, 2022, 10(6): e0146222. [百度学术]
刘波, 周群兰, 缪凌鸿, 等. 水产动物营养与免疫研究进展[J]. 水产学报, 2022, 46(10): 1761-1775. [百度学术]
LIU B, ZHOU Q L, MIAO L H, et al. Research progress in nutrition and immunity of aquatic animals[J]. Journal of Fisheries of China, 2022, 46(10): 1761-1775. [百度学术]
许燕, 余静, 王芳, 等. 酵母细胞壁多糖和硫化氢对罗氏沼虾3种免疫酶活性的影响[J]. 水生生物学报, 2014, 38(2): 382-385. [百度学术]
XU Y, YU J, WANG F, et al. Effects of yeast cell wall polysaccharides and H2S on the activities of three immune enzymes of Macrobrachium rosenbergii[J]. Acta Hydrobiologica Sinica, 2014, 38(2): 382-385. [百度学术]
吴维福, 陈娈娈, 李郁娇, 等. 三丁基锡对罗氏沼虾血清中免疫酶活力的影响[J]. 广东海洋大学学报, 2014, 34(3): 17-21. [百度学术]
WU W F, CHEN L L, LI Y J, et al. Effects of tributyltin on the activities of immunologic enzyme in blood serum of the Macrobrachium rosenbergill[J]. Journal of Guangdong Ocean University, 2014, 34(3): 17-21. [百度学术]
CHEN S K, XI M M, GAO F, et al. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms[J]. Frontiers in Pharmacology, 2023, 14: 1045309. [百度学术]
LV Q Y, LIN J R, WU X Y, et al. Novel active compounds and the anti-diabetic mechanism of mulberry leaves[J]. Frontiers in Pharmacology, 2022, 13: 986931. [百度学术]
JESZKA-SKOWRON M. FLACZYK E, PODGÓRSKI T. In vitro and in vivo analyses of Morus alba Polish var. wielkolistna zolwinska leaf ethanol-water extract—antioxidant and hypocholesterolemic activities in hyperlipideamic rats[J]. European Journal of Lipid Science and Technology, 2017, 119(10): 1600514. [百度学术]
KIM D, KANG K H. Anti-inflammatory and anti-bacterial potential of mulberry leaf extract on oral microorganisms[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 4984. [百度学术]
CHENG M, SHI Y B, CHENG Y M, et al. Mulberry leaf polysaccharide improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora, enhancing immune regulation and antioxidant capacity[J]. Frontiers in Microbiology, 2024, 15: 1382639. [百度学术]
ZHAO X J, LI L, LUO Q L, et al. Effects of mulberry (Morus alba L.) leaf polysaccharides on growth performance, diarrhea, blood parameters, and gut microbiota of early-weanling pigs[J]. Livestock Science, 2015, 177: 88-94. [百度学术]
杨继华, 陈冰, 黄燕华, 等. 饲料中添加桑叶黄酮对吉富罗非鱼生长性能、体成分、抗氧化指标及抗亚硝酸盐应激能力的影响[J]. 动物营养学报, 2017, 29(9): 3403-3412. [百度学术]
YANG J H, CHEN B, HUANG Y H, et al. Effects of dietary mulberry leaf flavonoids on growth performance, body composition, antioxidant indices and resistance to nitrite exposure of genetic improvement of farmed tilapia (Oreochromis niloticus)[J]. Chinese Journal of Animal Nutrition, 2017, 29(9): 3403-3412. [百度学术]
WEI Y X, HUANG J, SUN H, et al. Impact of different processing mulberry leaf on growth, metabolism and liver immune function of largemouth bass (Micropterus salmoides)[J]. Aquaculture Reports, 2023, 29: 101508. [百度学术]
JIANG W Q, LIN Y, QIAN L J, et al. Mulberry leaf polysaccharides attenuate oxidative stress injury in peripheral blood leukocytes by regulating endoplasmic reticulum stress[J]. Antioxidants, 2024, 13(2): 136. [百度学术]
NING L J, GAO L L, ZHOU W, et al. Beneficial effects of dietary mulberry leaf along with multi-enzyme premix on the growth, immune response and disease resistance of golden pompano Trachinotus ovatus[J]. Aquaculture, 2021, 535: 736396. [百度学术]
周东来, 刘凡, 杨琼, 等. 桑叶水提物对鳜生长、脂质代谢、抗氧化能力和肝脏肠道健康的影响[J]. 中国水产科学, 2023, 30(2): 206-217. [百度学术]
ZHOU D L, LIU F, YANG Q, et al. Effects of mulberry leaf water extract on growth, lipid metabolism, antioxidant capacity, and liver and intestinal health of Siniperca chuatsi[J]. Journal of Fishery Sciences of China, 2023, 30(2): 206-217. [百度学术]
王咏梅, 陈冰, 王国霞, 等. 饲料中添加桑叶黄酮对凡纳滨对虾生长性能、抗氧化指标及抗胁迫能力的影响[J]. 中国水产科学, 2020, 27(10): 1184-1195. [百度学术]
WANG Y M, CHEN B, WANG G X, et al. Effects of dietary mulberry leaf flavonoids on growth performance, antioxidant indices, and anti-hypoxic stress ability of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China, 2020, 27(10): 1184-1195. [百度学术]
王咏梅, 陈冰, 曹俊明, 等. 桑叶黄酮对凡纳滨对虾肠道黏膜形态和肠道菌群的影响[J]. 动物营养学报, 2020, 32(4): 1817-1825. [百度学术]
WANG Y M, CHEN B, CAO J M, et al. Effects of mulberry leaf flavonoids on intestinal mucosal morphology and intestinal flora of Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition, 2020, 32(4): 1817-1825. [百度学术]
SUN S M, BIAN C, ZHOU N, et al. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: insights from the brain-gut axis[J]. International Journal of Biological Macromolecules, 2023, 243: 125158. [百度学术]
曾晨爔, 林茂, 李忠琴, 等. 基于16S rRNA基因扩增子测序分析日本囊对虾肠道菌群结构与功能的特征[J]. 微生物学通报, 2020, 47(6): 1857-1866. [百度学术]
ZENG C X, LIN M, LI Z Q, et al. The structural and functional characteristics of the gut microbiota of Marsupenaeus japonicus as revealed by 16S rRNA gene amplicon sequencing[J]. Microbiology, 2020, 47(6): 1857-1866. [百度学术]
LAKHUJANI V, BADAPANDA C. prepare_taxa_charts.py: a Python program to automate generation of publication ready taxonomic pie chart images from QIIME[J]. Genomics Data, 2017, 12: 97-101. [百度学术]
DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688. [百度学术]
陈祥. 桑叶提取物对黑斑蛙生长性能、肠道及肝脏功能的影响[D]. 重庆: 西南大学, 2023. [百度学术]
CHEN X. Effects of mulberry leaf extract on growth performance, intestinal tract and liver function of Rana nigromaculata[D]. Chongqing: Southwest University, 2023. [百度学术]
冯麒凤, 李战福, 黄先智, 等. 日粮中添加桑叶提取物和1-脱氧野尻霉素对大鲵生长、消化、免疫能力和肠道菌群的影响[J]. 水生生物学报, 2021, 45(3): 582-592. [百度学术]
FENG Q F, LI Z F, HUANG X Z, et al. Effects of dietary mulberry leaf extract and 1-deoxynojirimycin on growth, digestion and immunity capacity, and intestinal microorganism of Chinese giant salamander (Andrias davidianus)[J]. Acta Hydrobiologica Sinica, 2021, 45(3): 582-592. [百度学术]
钟文豪, 黎尔纳, 李庆荣, 等. 桑叶低聚糖对大口黑鲈生长性能以及肠道消化酶活性、免疫功能和菌群的影响[J]. 动物营养学报, 2024, 36(3): 1795-1805. [百度学术]
ZHONG W H, LI E N, LI Q R, et al. Effects of mulberry leaf Oligosaccharides on growth performance, intestinal digestive enzyme activity, immune function and microflora of largemouth bass (Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition, 2024, 36(3): 1795-1805. [百度学术]
呙于明, 刘丹, 张炳坤. 家禽肠道屏障功能及其营养调控[J]. 动物营养学报, 2014, 26(10): 3091-3100. [百度学术]
GUO Y M, LIU D, ZHANG B K. Intestinal barrier of poultry: function and modulation[J]. Chinese Journal of Animal Nutrition, 2014, 26(10): 3091-3100. [百度学术]
黄玉章, 林旋, 王全溪, 等. 黄芪多糖对罗非鱼肠绒毛形态结构及肠道免疫细胞的影响[J]. 动物营养学报, 2010, 22(1): 108-116. [百度学术]
HUANG Y Z, LIN X, WANG Q X, et al. Effects of Astragalus polysaccharide on structure of intestinal villus and intestinal immunocyte of Tilapia[J]. Chinese Journal of Animal Nutrition, 2010, 22(1): 108-116. [百度学术]
张敏, 邹晓庭, 孙雅丽. 外源性谷氨酰胺对艾维茵肉仔鸡生长性能和小肠发育的影响[J]. 中国畜牧杂志, 2009, 45(9): 32-36. [百度学术]
ZHANG M, ZOU X T, SUN Y L. Supplement of Glutamine on growth performance and intestinal mucosae development in avian broilers[J]. Chinese Journal of Animal Science, 2009, 45(9): 32-36. [百度学术]
荣华, 夏优, 王晓雯, 等. 饲料中添加脯氨酸对浅色黄姑鱼生长、体组成及抗氧化能力的影响[J]. 上海海洋大学学报, 2023, 32(1): 89-97. [百度学术]
RONG H, XIA Y, WANG X W, et al. Effects of dietary proline on growth, body composition and antioxidant capacity of Chu’s croaker (Nibea coibor)[J]. Journal of Shanghai Ocean University, 2023, 32(1): 89-97. [百度学术]
周思顺, 林豪, 孔鲁闽, 等. 桑叶提取物对花鲈抗氧化能力和非特异性免疫的影响[J]. 水生生物学报, 2024, 48(9): 1483-1493. [百度学术]
ZHOU S S, LIN H, KONG L M, et al. Mulberry leaf extract on antioxidative capacity and non-specific immune of Lateolabrax maculatus[J]. Acta Hydrobiologica Sinica, 2024, 48(9): 1483-1493. [百度学术]
LI F H, XIANG J H. Signaling pathways regulating innate immune responses in shrimp[J]. Fish & Shellfish Immunology, 2013, 34(4): 973-980. [百度学术]
袁伟, 戴习林, 戈潘缘元, 等. RNA干扰不同类型TLR基因对罗氏沼虾免疫相关基因表达的影响[J]. 上海海洋大学学报, 2021, 30(4): 590-600. [百度学术]
YUAN W, DAI X L, GE P Y Y, et al. Effects of RNA interferences with different Toll-like receptors on the expression of immune-related genes in Macrobrachium rosenbergii[J]. Journal of Shanghai Ocean University, 2021, 30(4): 590-600. [百度学术]
田相利, 秦光彩, 罗凯, 等. 3种不同添加物对凡纳滨对虾生长、非特异免疫和抗病力的影响[J]. 中国海洋大学学报(自然科学版), 2024, 54(2): 33-43. [百度学术]
TIAN X L, QIN G C, LUO K, et al. Effects of three additives on growth performance, non-specific immunity and disease resistance of Litopenaeus vannamei[J]. Periodical of Ocean University of China, 2024, 54(2): 33-43. [百度学术]
JIANG W Q, QIAN L J, MU Q Q, et al. Endoplasmic reticulum stress and C
李小兵. 桑叶多糖对长期大负荷运动训练小鼠免疫功能的影响[J]. 中国实验方剂学杂志, 2012, 18(24): 269-272. [百度学术]
LI X B. Effect of mulberry leaves polysaccharide on immune function in mice with long-term heavy training[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(24): 269-272. [百度学术]
GAO Q X, LUO J P, LIU P M, et al. Characteristics of intestinal microbiota in male morphotypes of the giant freshwater prawn Macrobrachium rosenbergii[J]. Aquaculture, 2022, 555: 738200. [百度学术]
XIONG Y F, LI Q M, DING Z L, et al. Dietary α-lipoic acid requirement and its effects on antioxidant status, carbohydrate metabolism, and intestinal microflora in oriental river prawn Macrobrachium nipponense (De Haan)[J]. Aquaculture, 2022, 547: 737531. [百度学术]
董学兴, 吕林兰, 赵卫红, 等. 不同养殖模式下罗氏沼虾肠道菌群结构特征及其与环境因子的关系[J]. 上海海洋大学学报, 2019, 28(4): 501-510. [百度学术]
DONG X X, LYU L L, ZHAO W H, et al. Effects of different cultural patterns on microbial communities in the intestine of Macrobrachium rosenbergii and interactions with environment factors[J]. Journal of Shanghai Ocean University, 2019, 28(4): 501-510. [百度学术]
YANG M Q, JIANG D H, ZHANG L L, et al. Mulberry (Morus alba) leaves improved the growth and intestinal health in largemouth bass (Micropterus salmoides) fed a cottonseed protein concentrate-based diet[J]. Aquaculture, 2024, 592: 741212. [百度学术]
YIN C M, NORATTO G D, FAN X Z, et al. The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host: a review[J]. Carbohydrate Polymers, 2020, 250: 116942. [百度学术]
陈涟昊, 张霞, 孙世芳, 等. 桑叶多糖调节小鼠肠道菌群失调的研究 [J]. 现代药物与临床, 2015, 30(6): 633-636. [百度学术]
CHEN L H, ZHANG X, SUN S F, et al. Regulation of Morus alba polysaccharides on disturbance of intestinal flora in mice[J]. Drugs & Clinic, 2015, 30(6): 633-636. [百度学术]
CHEN Y, NI J J, LI H W. Effect of green tea and mulberry leaf powders on the gut microbiota of chicken[J]. BMC Veterinary Research, 2019, 15(1): 77. [百度学术]
KUMRU S, TEKEDAR H C, BLOM J, et al. Genomic diversity in flavobacterial pathogens of aquatic origin[J]. Microbial Pathogenesis, 2020, 142: 104053. [百度学术]