摘要
为了解西北太平洋重要鱼种形态结构多样性,有效提升该海域鱼类物种识别效率,利用地标点数据和几何形态测量学方法分析了西北太平洋8目14科24属26种鱼类(n=485尾)的形态差异,评估不同鱼体部位形态参数对物种识别的分类效果。结果显示,不同目和物种的鱼体形态存在显著差异,多元回归分析检测到部分物种存在异速生长现象。分类方面,鱼体和躯干部形状可以较好地区分不同物种。研究表明,西北太平洋海域鱼类物种具有多样的体型结构,不同物种生活史的异质性及遗传因素可能是导致体型多样性的原因。本研究可以提升西北太平洋海域的鱼类分类效果,为西北太平洋鱼类物种的可持续开发和有效资源管理提供科学依据。未来研究可以增加更多的物种和数量以便探究更加普适性的形态差异和分类效果。
西北太平洋位于世界联合国粮食和农业组织(Food and Agriculture Organization, FAO)61渔区,海域辽
自18世纪以来,鱼类形态的研究通常采用传统的线性测量方法,这种方法具有测量快速、分析直观的优
西北太平洋鱼类种类繁多,在系统发育分类背景下对该海域鱼类进行广泛的生物多样性研究是目前鱼类形态学研究中面临的挑战之一,目前利用鱼体几何形态方法对鱼类物种识别的研究较为缺乏,且未有研究不同鱼体部位形态差异的分类效果。为此,本研究使用几何形态测量学地标点法表征了西北太平洋8目14科24属26种共485尾鱼体形态,探究不同目间鱼体形态的差异。基于地标点坐标数据将鱼体形态划分为头、躯干和尾共3个部位,评估不同鱼体部位形状对目和物种分类的效果,旨在提升西北太平洋海域的鱼类分类效果,为西北太平洋鱼类物种的可持续开发和有效资源管理提供科学依据,同时也为相关研究提供技术参考。
样本依托上海海洋大学远洋渔业资源调查船“淞航”号开展的远洋渔业资源综合科学调查,调查采用4片式单囊中层拖网,主尺度为434 m×97.1 m(44.98 m)。采集海域为西北太平洋(35°N~45°N、148°E~164°E)公海海域(

图1 西北太平洋渔业资源调查采样站点
Fig.1 Sampling station of fishery resources survey in the Northwest Pacific
目Order/科Family/属Genus | 种Species | 样本数量Samples/尾 |
---|---|---|
仙女鱼目Aulopiformes | ||
大鳞蜥鱼科Notosudidae | ||
弱蜥鱼属Scopelosaurus | 霍氏弱蜥鱼Scopelosaurus hoedti | 23 |
![]() | ||
北极![]() |
北极![]() | 1 |
大梭蜥鱼属Magnisudis | 大西洋梭蜥鱼Magnisudis atlantica | 10 |
纤柱鱼属Stemonosudis | 纤柱鱼Stemonosudis sp. | 1 |
颌针鱼目Beloniformes | ||
竹刀鱼科Scomberesocidae | ||
秋刀鱼属Cololabis | 秋刀鱼Cololabis saira | 29 |
鲱形目Clupeiformes | ||
鲱科Alosidae | ||
拟沙丁鱼属Sardinops | 远东拟沙丁鱼Sardinops sagax | 62 |
鳀科Engraulidae | ||
鳀属Engraulis | 日本鳀Engraulis japonicus | 68 |
月鱼目Lampriformes | ||
粗鳍鱼科Trachipteridae | ||
粗鳍鱼属Trachipterus | 石川粗鳍鱼Trachipterus ishikawae | 3 |
灯笼鱼目Myctophiformes | ||
灯笼鱼科Myctophidae | ||
眶灯鱼属Diaphus | 眶灯鱼Diaphus sp. | 21 |
灯笼鱼属Myctophum | 粗鳞灯笼鱼Myctophum asperum | 35 |
背灯鱼属Notoscopelus | 闪光背灯鱼Notoscopelus resplendens | 18 |
标灯鱼属Symbolophorus | 加利福尼亚标灯鱼Symbolophorus californiensis | 38 |
泰勒灯鱼属Tarletonbeania | 泰勒灯鱼Tarletonbeania taylori | 4 |
鲭形目Scombriformes | ||
乌鲂科Bramidae | ||
乌鲂属Brama | 日本乌鲂Brama japonica | 2 |
乌鲂属Brama | 梅氏乌鲂Brama myersi | 10 |
棱鲂属Taractes | 红棱鲂Taractes rubescens | 10 |
蛇鲭科Gemphilidae | ||
若蛇鲭属Nealotus | 三棘若蛇鲭Nealotus tripes | 27 |
鲭科Scombridae | ||
羽鳃鲐属Rastrelliger | 福氏羽鳃鲐Rastrelliger faughni | 29 |
鲭属Scomber | 澳洲鲭Scomber australasicus | 6 |
鲭属Scomber | 日本鲭Scomber japonicus | 70 |
带鱼科Trichiuridae | ||
剃刀带鱼属Assurger | 长剃刀带鱼Assurger anzac | 2 |
深海带鱼属Benthodesmus | 叉尾深海带鱼Benthodesmus tenuis | 2 |
巨口鱼目Stomiiformes | ||
巨口光灯鱼科Phosichthyidae | ||
颌光鱼属Ichthyococcus | 颌光鱼Ichthyococcus sp. | 1 |
褶胸鱼科Sternoptychidae | ||
银斧鱼属Argyropelecus | 棘银斧鱼Argyropelecus aculeatus | 3 |
烛光鱼属Polyipnus | 松原烛光鱼Polyipnus matsubarai | 4 |
海鲂目Zeiformes | ||
海鲂科Zeidae | ||
亚海鲂属Zenopsis | 雨印亚海鲂Zenopsis nebulosa | 6 |
为了防止冷冻和保存试剂对鱼类形态的影
所有样本采集、实验流程、研究方法均严格按照《上海海洋大学实验室动物伦理规范》和上海海洋大学伦理委员会制定的规章制度执行。样本经科考船调查结束后运回学校基础生物实验室进行其余生物学测定,包括性别、性腺成熟度和体质量等,依据《渔业资源生物学
依据前人研

图2 鱼体形态和地标点示意图(以粗鳞灯笼鱼为例)
Fig.2 Fish body morphology and landmarks (Myctophum asperum as a case)
数字代表地标点编号。
Numbers represent the landmarks.
地标点Landmarks | 类型 Type | 描述 Description |
---|---|---|
1 | Ⅲ | 上颌最前端Most anterior of upper jaw |
2 | Ⅰ | 枕骨后末端Distal tip of occiput |
3 | Ⅰ | 背鳍起点Origin of dorsal fin |
4 | Ⅰ | 背鳍基部末端Posterior end of dorsal fin base |
5 | Ⅰ | 尾鳍基部上端Upper insertion of caudal fin base |
6 | Ⅰ | 尾鳍基部下端Lower insertion of caudal fin base |
7 | Ⅰ | 臀鳍基部末端Posterior end of anal fin base |
8 | Ⅰ | 臀鳍起点Origin of anal fin |
9 | Ⅰ | 腹鳍起点(带鱼科为泄殖孔处)Origin of pelvic fin (The Trichiuridae is the cloaca) |
10 | Ⅰ | 前鳃盖骨腹侧起点Origin of the preopercle on the ventral |
11 | Ⅲ | 眼前缘The anterior margin of the eye |
12 | Ⅲ | 眼上缘The upper margin of the eye |
13 | Ⅲ | 眼后缘The posterior margin of the eye |
14 | Ⅲ | 眼下缘The lower margin of the eye |
15 | Ⅲ | 鳃盖后缘The posterior margin of the operculum |
所有的鱼体几何形态测量学分析均在R4.0.5“geomorph”包中进
普氏方差分析结果显示不同目鱼类体长和质心大小存在显著差异(P<0.01),月鱼目(Lampriformes)鱼体最大,颌针鱼目(Beloniformes)次之,其余分别为海鲂目(Zeiformes)、鲭形目(Scombriformes)、鲱形目(Clupeiformes)、仙女鱼目(Aulopiformes)、灯笼鱼目(Myctophiformes),巨口鱼目(Stomiiformes)鱼体最小,见

图3 不同目的鱼类体长和鱼体质心大小差异
Fig.3 Variation of the body length and centroid size of fishes among different orders
项目Item | df | SS | MS | F | P |
---|---|---|---|---|---|
体长Body length | 7 | 2 070 082 | 295 726 | 159.300 | 0.001 |
质心大小Centroid size | 7 | 62 633 | 8 947.5 | 75.538 | 0.001 |
鱼体形状Body shape | 7 | 7.923 4 | 1.131 91 | 85.797 | 0.001 |
多元回归分析检测到部分物种[秋刀鱼(C. saira)、远东拟沙丁鱼(S. sagax)、粗鳞灯笼鱼(M. asperum)、加利福尼亚标灯鱼(S. californiensis)、眶灯鱼(Diaphus sp.)、日本鲭(S. japonicus)、红棱鲂(T. rubescens)]种内级别的大小和形状之间存在显著性差异(P<0.01),即存在异速生长现象。其余物种异速生长现象较弱(P>0.01)。普氏方差分析显示不同目间鱼体形状存在显著性差异(

图4 鱼体普氏叠印的数字化地标(灰点)和平均形状(黑点)
Fig.4 Digitized landmarks (grey dots) and mean shapes (black dots) of Procrustes superimposition for fish body
前两个主成分(PC1和PC2)分别解释了鱼体形状变化总方差的41.6%和27.8%(

图5 不同目的鱼体形状变量的主成分分析
Fig.5 Principal component analysis of fish body shape variables of the different orders
线框图可视化了不同目鱼体形状差异,不同目鱼体头部(地标点1~2、10~15)、躯干部(地标点2~4、7~10、15)和尾部(地标点5~7)均检测到不同程度的形状差异(

图6 不同目的鱼体形状变异图
Fig.6 Body shape variation of fishes among different orders
黑点和轮廓为不同目的平均形状,灰点和轮廓为所有样本的平均形状。
The black points and outlines are the mean shapes of different orders, the grey points and outlines are the mean shapes of all specimen.
普氏方差分析结果(
分类Classification | 部位Body parts | df | SS | MS | F | Z | P |
---|---|---|---|---|---|---|---|
目Order | 身体 | 7 | 7.887 | 1.127 | 84.912 | 15.453 | 0.001 |
头 | 7 | 11.504 | 1.644 | 58.105 | 11.614 | 0.001 | |
躯干 | 7 | 19.587 | 2.798 | 93.863 | 17.175 | 0.001 | |
尾 | 7 | 3.512 | 0.502 | 36.179 | 12.804 | 0.001 | |
物种Species | 身体 | 25 | 13.128 | 0.525 | 221.470 | 16.538 | 0.001 |
头 | 25 | 21.628 | 0.865 | 117.920 | 13.411 | 0.001 | |
躯干 | 25 | 31.529 | 1.261 | 254.170 | 21.226 | 0.001 | |
尾 | 25 | 8.452 | 0.338 | 92.637 | 14.121 | 0.001 |
目 Order | 身体Body | 头Head | 躯干Torso | 尾Tail | ||||
---|---|---|---|---|---|---|---|---|
原始 Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | |
仙女鱼目Aulopiformes | 100.0 | 100.0 | 82.9 | 82.9 | 100.0 | 100.0 | 0 | 0 |
颌针鱼目Beloniformes | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
鲱形目Clupeiformes | 100.0 | 100.0 | 86.9 | 86.9 | 100.0 | 100.0 | 72.3 | 71.5 |
月鱼目Lampriformes | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
灯笼鱼目Myctophiformes | 100.0 | 100.0 | 84.1 | 83.2 | 95.6 | 93.8 | 33.6 | 33.6 |
鲭形目Scombriformes | 99.4 | 99.4 | 86.8 | 86.8 | 94.3 | 92.5 | 86.2 | 86.2 |
巨口鱼目Stomiiformes | 80.0 | 80.0 | 60.0 | 60.0 | 80.0 | 60.0 | 20.0 | 0 |
海鲂目Zeiformes | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 66.7 | 66.7 |
总体Total | 97.4 | 97.4 | 87.6 | 87.5 | 96.2 | 93.3 | 34.9 | 32.3 |
物种 Species | 身体Body | 头Head | 躯干Torso | 尾Tail | ||||
---|---|---|---|---|---|---|---|---|
原始Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | 原始Original | 交叉验证Cross-validation | |
霍氏弱蜥鱼Scopelosaurus hoedti | 100.0 | 100.0 | 91.3 | 82.6 | 100.0 | 100.0 | 21.7 | 21.7 |
北极![]() | 100.0 | 0 | 100.0 | 0 | 100.0 | 0 | 0 | 0 |
大西洋梭蜥鱼Magnisudis atlantica | 100.0 | 100.0 | 70.0 | 70.0 | 100.0 | 100.0 | 10.0 | 10.0 |
纤柱鱼属Stemonosudis sp. | 100.0 | 0 | 100.0 | 0 | 100.0 | 0 | 0 | 0 |
秋刀鱼Cololabis saira | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
远东拟沙丁鱼Sardinops sagax | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 74.2 | 72.6 |
日本鳀Engraulis japonicus | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 86.8 | 85.3 |
石川粗鳍鱼Trachipterus ishikawae | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
眶灯鱼属Diaphus sp. | 100.0 | 100.0 | 90.5 | 85.7 | 95.2 | 95.2 | 0 | 0 |
粗鳞灯笼鱼Myctophum asperum | 100.0 | 100.0 | 90.6 | 81.3 | 93.8 | 90.6 | 0 | 0 |
闪光背灯鱼Notoscopelus resplendens | 100.0 | 100.0 | 94.4 | 94.4 | 94.4 | 94.4 | 27.8 | 27.8 |
加利福尼亚标灯鱼Symbolophorus californiensis | 97.4 | 97.4 | 92.1 | 92.1 | 94.7 | 86.8 | 36.8 | 34.2 |
泰勒灯鱼Tarletonbeania taylori | 100.0 | 100.0 | 100.0 | 75.0 | 100.0 | 100.0 | 0 | 0 |
日本乌鲂Brama japonica | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
梅氏乌鲂Brama myersi | 100.0 | 87.5 | 100.0 | 100.0 | 100.0 | 100.0 | 75.0 | 62.5 |
红棱鲂Taractes rubescens | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 70.0 | 50.0 |
三棘若蛇鲭Nealotus tripes | 100.0 | 100.0 | 100.0 | 100.0 | 96.3 | 92.6 | 40.7 | 40.7 |
福氏羽鳃鲐Rastrelliger faughni | 75.9 | 72.4 | 6.9 | 0 | 79.3 | 75.9 | 0 | 0 |
澳洲鲭Scomber australasicus | 100.0 | 100.0 | 0 | 0 | 100.0 | 100.0 | 0 | 0 |
日本鲭Scomber japonicus | 98.6 | 97.1 | 100.0 | 97.1 | 98.6 | 98.6 | 100.0 | 100.0 |
长剃刀带鱼Assurger anzac | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 50.0 | 0 | 0 |
叉尾深海带鱼Benthodesmus tenuis | 50.0 | 0 | 100.0 | 0 | 50.0 | 0 | 0 | 0 |
颌光鱼Ichthyococcus sp. | 100.0 | 0 | 100.0 | 0 | 100.0 | 0 | 0 | 0 |
棘银斧鱼Argyropelecus aculeatus | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 0 | 0 |
松原烛光鱼Polyipnus matsubarai | 100.0 | 100.0 | 100.0 | 25.0 | 100.0 | 100.0 | 0 | 0 |
雨印亚海鲂Zenopsis nebulosa | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 83.3 |
总体Total | 97.0 | 82.9 | 89.8 | 69.4 | 96.2 | 80.2 | 24.7 | 22.6 |
鱼体形状在鱼类物种识别的应用仍存在一些挑战。鱼体冷冻和试剂保存会导致鱼类的身体不同部位的拱起(Arching),极大地影响了鱼体形态的标
海洋环境的差异,例如气候异质性和资源可利用性等可能与鱼类大小间存在一定的相关
相关研究同样发现鱼类形状具有一定的表型可塑性,受栖息地、摄食、资源可利用性和水流速度等外界环境因素的影
鱼体形状凭借高度多样化的特征,是物种识别和种群划分的有用材料,因此在分类学研究中具有重要意
本研究基于几何形态测量学方法表征了西北太平洋海域重要经济鱼类的体型多样性,提取并可视化了不同目间鱼体形态差异,构建了不同鱼体形态部位的分类体系。研究发现,不同目间鱼体形态存在显著差异,鲭形目物种占据了主要的形态空间,身体和躯干形状产生了一致且较好的物种分类效果。研究结果表明,西北太平洋海域鱼类物种的体型多样性极高,不同物种的摄食机制、洄游和扩散能力等生活史的异质性以及物种的遗传因素可能是导致体型多样性的原因。未来研究可以增加滑动半地标点提升形状可视化效果,增加更多的物种和数量以便探究更加普适性的形态差异和分类效果。
利益冲突
作者声明本文无利益冲突
参考文献
HARLAY J, CHOU L, DE BODT C, et al. Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 111-127. [百度学术]
Food and Agriculture Organization of the United Nations. Fishery and aquaculture statistics[M]. Rome: Food and Agriculture Organization of the United Nations, 2022. [百度学术]
TAMAKI K, HONZA E. Global tectionics and formation of marginal basins: role of the western Pacific[J]. Episodes, 1991, 14(3): 224-230. [百度学术]
唐峰华, 岳冬冬, 熊敏思, 等. 《北太平洋公海渔业资源养护和管理公约》解读及中国远洋渔业应对策略[J]. 渔业信息与战略, 2016, 31(3): 210-217. [百度学术]
TANG F H, YUE D D, XIONG M S, et al. Interpretation of Convention on the Conservation and Management of High Seas Fisheries Resources in the North Pacific Ocean and coping strategies from China oceanic fisheries[J]. Fishery Information & Strategy, 2016, 31(3): 210-217. [百度学术]
梁绪虹,王丛丛,刘洋,等. 基于环境DNA技术的黑潮-亲潮交汇区夏季鱼类物种多样性分析[J]. 上海海洋大学学报,2024,33(4):911-926. [百度学术]
LIANG X H, WANG C C,LIU Y,et al. Fish diversity analysis of the Kuroshio-Oyashio confluence region in summer based on environmental DNA technology[J]. Journal of Shanghai Ocean University,2024,33(4):911-926. [百度学术]
刘思源, 张衡, 杨超, 等. 基于最大熵模型的西北太平洋远东拟沙丁鱼和日本鲭栖息地差异[J]. 上海海洋大学学报, 2023, 32(4): 806-817. [百度学术]
LIU S Y, ZHANG H, YANG C, et al. Differences in habitat distribution of Sardinops melanostictus and Scomber japonicus in the northwest Pacific based on a maximum entropy model[J]. Journal of Shanghai Ocean University, 2023, 32(4): 806-817. [百度学术]
HUBBS C L, BAILEY R M. A revision of the black basses (Micropterus and Huro), with descriptions of four new forms[R]. Michigan: University of Michigan, 1940: 1-51. [百度学术]
BOOKSTEIN F L. Size and shape spaces for landmark data in two dimensions[J]. Statistical Science, 1986, 1(2): 181-222. [百度学术]
ROHLF F J, SLICE D. Extensions of the procrustes method for the optimal superimposition of landmarks[J]. Systematic Biology, 1990, 39(1): 40-59. [百度学术]
王超, 方舟, 陈新军. 基于文献计量的几何形态测量在渔业中的应用研究进展[J]. 海洋渔业, 2022, 44(1): 112-128. [百度学术]
WANG C, FANG Z, CHEN X J. Advances in the application of bibliometrics-based geometric morphometrics in fisheries[J]. Marine Fisheries, 2022, 44(1): 112-128. [百度学术]
SANTOS S R, PESSÔA L M, VIANNA M. Geometric morphometrics as a tool to identify species in multispecific flatfish landings in the Tropical Southwestern Atlantic[J]. Fisheries Research, 2019, 213: 190-195. [百度学术]
侯刚, 刘丹丹, 冯波, 等. 基于地标点几何形态测量法识别北部湾4种白姑鱼矢耳石形态[J]. 中国水产科学, 2013, 20(6): 1293-1302. [百度学术]
HOU G, LIU D D, FENG B, et al. Using landmark-based geometric morphometrics analysis to identify sagittal otolith of four Pennahia fish species[J]. Journal of Fishery Sciences of China, 2013, 20(6): 1293-1302. [百度学术]
IBÁÑEZ A L, GUERRA E, PACHECO-ALMANZAR E. Fish species identification using the rhombic squamation pattern[J]. Frontiers in Marine Science, 2020, 7: 211. [百度学术]
CHOI S W, YU H J, KIM J K. Comparative ontogeny and phylogenetic relationships of eight lizardfish species (Synodontidae) from the Northwest Pacific, with a focus on Trachinocephalus monophyly[J]. Journal of Fish Biology, 2024, 104(1): 284-303. [百度学术]
CHOLLET‐VILLALPANDO J G, GARCÍA‐RODRÍGUEZ F J, DE LA CRUZ‐AGÜERO J. Character variation in separate body regions of Gerreidae (Osteichthyes: Teleostei) fishes inferred from geometric morphometrics[J]. Journal of Fish Biology, 2024, 104(3): 723-736. [百度学术]
NELSON J S, GRANDE T C, WILSON M V H. Fishes of the world[M]. Hoboken: John Wiley & Sons, 2016. [百度学术]
SOTOLA V A, CRAIG C A, PFAFF P J, et al. Effect of preservation on fish morphology over time: implications for morphological studies[J]. PLoS One, 2019, 14(3): e0213915. [百度学术]
FRUCIANO C, SCHMIDT D, RAMÍREZ SANCHEZ M M, et al. Tissue preservation can affect geometric morphometric analyses: a case study using fish body shape[J]. Zoological Journal of the Linnean Society, 2020, 188(1): 148-162. [百度学术]
王超, 方舟, 陈新军. 基于几何形态测量法的剑尖枪乌贼角质颚形态变化研究[J]. 渔业科学进展, 2023, 44(1): 58-69. [百度学术]
WANG C, FANG Z, CHEN X J. Beak morphology variation of Uroteuthis edulis based on geometric morphometrics[J]. Progress in Fishery Sciences, 2023, 44(1): 58-69. [百度学术]
陈新军, 刘必林. 渔业资源生物学[M]. 北京: 科学出版社, 2017. [百度学术]
CHEN X J, LIU B L. Fishery resource biology[M]. Beijing: Science Press, 2017. [百度学术]
杨德逍,俞骏,王超,等. 基于几何形态测量的西北太平洋日本鲭的个体生长规律[J]. 上海海洋大学学报,2024,33(4):859-867. [百度学术]
YANG D X,YU J,WANG C,et al. Growth regularity of Scomber japonicus based on geometric morphometrics in Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):859-867. [百度学术]
ROHLF F J. The tps series of software[J]. Hystrix, the Italian Journal of Mammalogy, 2015, 26(1): 9-12. [百度学术]
VISCOSI V, CARDINI A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners[J]. PLoS One, 2011, 6(10): e25630. [百度学术]
FANG Z, CHEN X J, SU H, et al. Evaluation of stock variation and sexual dimorphism of beak shape of neon flying squid, Ommastrephes bartramii, based on geometric morphometrics[J]. Hydrobiologia, 2017, 784(1): 367-380. [百度学术]
ADAMS D C, OTÁROLA-CASTILLO E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data[J]. Methods in Ecology and Evolution, 2013, 4(4): 393-399. [百度学术]
BAKEN E K, COLLYER M L, KALIONTZOPOULOU A, et al. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience[J]. Methods in Ecology and Evolution, 2021, 12(12): 2355-2363. [百度学术]
陈新军, 方舟, 陈洋洋, 等. 几何形态测量学在水生生物中的应用[M]. 北京: 科学出版社, 2017. [百度学术]
CHEN X J, FANG Z, CHEN Y Y, et al. Application of geometric morphometry to aquatic organisms[M]. Beijing: Science Press, 2017. [百度学术]
刘必林, 顾心雨, 王冰妍, 等. 角质颚色素沉积可视化及其在头足类判别分类中的应用[J]. 上海海洋大学学报, 2023, 32(4): 785-793. [百度学术]
LIU B L, GU X Y, WANG B Y, et al. Visualization of cephalopod beak pigmentation and its application to the classification of cephalopods[J]. Journal of Shanghai Ocean University, 2023, 32(4): 785-793. [百度学术]
DWIVEDI A K, DE K. Role of morphometrics in fish diversity assessment: status, challenges and future prospects[J]. National Academy Science Letters, 2024, 47(2): 123-126. [百度学术]
ALÒ D, PIZARRO V, HABIT E. Fish body size influenced by multiple drivers[J]. Ecography, 2024, 2024(1): e06865. [百度学术]
EMMRICH M, PÉDRON S, BRUCET S, et al. Geographical patterns in the body‐size structure of European lake fish assemblages along abiotic and biotic gradients[J]. Journal of Biogeography, 2014, 41(12): 2221-2233. [百度学术]
AHTI P A, KUPARINEN A, UUSI-HEIKKILÄ S. Size does matter-the eco-evolutionary effects of changing body size in fish[J]. Environmental Reviews, 2020, 28(3): 311-324. [百度学术]
BEAUGRAND G, BRANDER K M, LINDLEY J A, et al. Plankton effect on cod recruitment in the North Sea[J]. Nature, 2003, 426(6967): 661-664. [百度学术]
HETZEL C, FORSYTHE P. Phenotypic plasticity of a generalist fish species resident to lotic environments: insights from the Great Lakes region[J]. Ecology and Evolution, 2023, 13(11): e10715. [百度学术]
ANAYA-GODÍNEZ E, SILVA‐SEGUNDO C A, LANDAETA M F, et al. Influence of oceanographic conditions on the body shape variability of Scomber japonicus larvae from the western coast of the Baja California Peninsula[J]. Fisheries Oceanography, 2022, 31(3): 225-237. [百度学术]
RIEDE K. Global register of migratory species: from global to regional scales: final report of the R&D-Projekt 808 05 081[M]. Bonn: Federal Agency for Nature Conservation, 2004. [百度学术]
HUNTER J R, KIMBRELL C A. Early life history of Pacific mackerel, Scomber japonicus[J]. Fishery Bulletin, 1980, 78(1): 89-101. [百度学术]
PÖRTNER H O, SCHULTE P M, WOOD C M, et al. Niche dimensions in fishes: an integrative view[J]. Physiological and Biochemical Zoology, 2010, 83(5): 808-826. [百度学术]
DE SCHEPPER N, VAN WASSENBERGH S, ADRIAENS D. Morphology of the jaw system in trichiurids: trade-offs between mouth closing and biting performance[J]. Zoological Journal of the Linnean Society, 2008, 152(4): 717-736. [百度学术]
KOBELKOWSKY A. Osteology of the sea mojarra, Diapterus auratus Ranzani (Teleostei: Gerreidae)[J]. Hidrobiológica, 2004, 14(1): 1-10. [百度学术]
曹誉尹. 基于计算机视觉的鱼类冲刺-滑行游泳行为研究[D]. 重庆: 重庆交通大学, 2023. [百度学术]
CAO Y Y. Research on fish burst-coast swimming behavior based on computer vision[D]. Chongqing: Chongqing Jiaotong University, 2023. [百度学术]
INGRAM T. Diversification of body shape in Sebastes rockfishes of the north-east Pacific[J]. Biological Journal of the Linnean Society, 2015, 116(4): 805-818. [百度学术]