摘要
深远海作为海洋生态系统的重要组成部分,具有独特的生物多样性特征,蕴含了丰富的渔业资源。因此,对深远海鱼类多样性实施高效、准确的检测是开展渔业资源利用和管理的重要前提。然而,基于网具捕捞的传统调查方法具有一定的局限性,eDNA技术因其具有更广泛的应用场景、更突出的成本效益、更高的检测灵敏度和更精细的物种分辨率以及更低的分类阶元偏向性等特点和优势,可作为传统调查方法的重要补充,并且在深远海鱼类多样性监测和渔业资源调查中具有广阔的应用前景。归纳总结了eDNA在鱼类多样性的研究现状及其在深远海鱼类多样性研究中的应用优势,同时结合深远海水域的环境特点,探讨了eDNA技术在深远海鱼类多样性研究中的应用潜力以及可能面临的相关挑战,并为未来进一步的研究工作提供系统的科学参考。
深远海是指水深大于200 m、远离大陆架公海以外的开放水域,同时也是地球上最大、探索最少的生态系统之
鱼类作为深远海生态系统的重要类群之一,在生态网络中居于重要位置,绝大多数深远海鱼类是连接底层营养层级生物和顶层捕食者之间的重要联
然而,相较于近岸海域,深远海因面积较大、调查频次不足、数据欠缺等原因,迄今为止对深远海生物多样性调查和监测相对有限,对于深远海的鱼类区系和多样性格局的了解仍较为欠
此外,这些调查方法需要调查人员具备专业的形态鉴定基础知识,在鉴定鱼类的早期发育阶段(鱼类浮游生物)的样品时尤其具有挑战性,因为鱼类浮游生物的个体小、区分困难,能用于鉴别的可识别特征较少,用传统方法识别和鉴定具有较大的难
eDNA的概念最早提出于20世纪80年代末,最初是应用于微生物多样性研究领
本文围绕eDNA技术在鱼类多样性的研究现状、eDNA技术在深远海鱼类多样性研究中的应用优势及其面临的挑战等方面展开论述。同时,结合深远海的环境特点和鱼类多样性调查监测的具体要求,展望了eDNA技术在深远海鱼类多样性研究中的应用前景,旨在为深远海鱼类多样性的研究提供更多的科学参考,并推动eDNA技术更高效地应用于深远海的鱼类多样性研究中,从而服务于深远海环境下的生物多样性的保护与渔业资源养护管理。
基于eDNA技术检测珍稀物种、濒危物种或有商业价值的经济物种的有无以及对外来入侵物种的早期预警监测是单物种分析中最常见的应用方向。珍稀和濒危物种在生态系统中的密度较低,用传统方法监测存在较大的遗漏可能,而通过eDNA技术的单物种分析可精准检测低密度目标物种的存在。例如,在日本有一种迄今只收集到6尾标本的极为罕见的黑头鱼(Narcetes shonanmaruae),FUJIWARA
基于eDNA技术的单物种分析在特定条件下还能实现对目标生物的丰度和资源量的定量评估。最早是FICETOLA
eDNA技术还能通过检测其丰度在空间和时间上的变化来监测鱼类的行
上述研究表明eDNA技术可为调查鱼类行为提供重要信息,从而为鱼类保护措施的实施和渔业政策的制定提供科学参
与传统调查方式相比,从生态系统中捕获的eDNA,可以不考虑物种的形态特征、运动模式或栖息地偏
CHEANG
用传统方式揭示鱼类自然种群的遗传多样性存在一定的挑战,这主要体现在采样困难方面,因为需要捕获来自不同地理群体的一定数量的个体以保证可靠的遗传分析。相较而言,使用eDNA技术开展遗传多样性研究只需要采集研究区域不同地点的水样,给采样环节带来了极大的便利性,具体原理是检测样品中的同一种群不同个体的DNA序列,通过个体间的序列变异进行分析,这为鱼类群体遗传分析提供了非侵入性、经济和高效的替代方
在最早的开创性研究中,SIGSGAARD
此外,多项研究进一步表明基于qMiSeq平台等的eDNA技术不但具有分析定量评估鱼类群落组成的重要应用潜力,也能够揭示不同鱼类的系统地理格
近十余年里,eDNA作为生物多样性监测推断物种存在的间接遗传标记在国内外的研究中发展迅速。目前,基于eDNA技术对鱼类群落的研究已经遍布世界各地,这些研究地理覆盖范围广泛,基于eDNA技术研究海洋鱼类群落的文章也不少见,其中包括河
此外,有研究证实eDNA技术能够应用于深达3 000 m的深海海底和中上层鱼类群落进行鱼类多样性检
基于传统的网具捕捞方法针对深远海水域开展鱼类多样性和渔业资源调查和监测,其人力和经济成本都十分高昂。eDNA技术水样收集容易且能够减少劳动密集型的常规分类鉴定,在监测成本和效率上均有较为明显的优
深远海的鱼类调查若仅依靠租用专业渔业船只的方式开展,经济、时间和人力成本将十分高昂,而这些研究从侧面证明,eDNA技术通过搭载其他航次获取海水等环境样品的方式进行调查可以快速、全面获取同水域内不同深度的鱼类分布数据,成本效益将十分凸
eDNA技术能够通过分析单个水样来识别广泛的生物类群,可以检测到传统调查方法较难发现的隐存种、低密度种群以及珍稀物种,实现生物物种的高效鉴别以及多生物群落监
总的来说,eDNA技术可以为低密度、濒危物种提供分布与否的数据信息,甚至估计种群大小,为这些物种的保护和管理提供必不可少的基础资
基于捕捞的传统取样方法在鱼类种类和大小选择上存在较大差异,需要根据特定生境条件对整个鱼类群落综合选取全面有效的取样方
一般认为,eDNA技术与传统调查方法相结合,可以实现更多生物类群的识别和交叉验证,以降低物种的分类阶元偏向
eDNA分析的操作流程为eDNA的获取、提取分析和鉴定等步骤,其中最影响实验结果的环节是DNA所包含的物种信息的鉴
另一方面,eDNA的鉴定过程中可能出现因扩增引物的种属特异性不足导致无法区隔近缘
检测结果的假阳性和假阴性主要是基于研究目标区域的实际物种DNA是否被检验出来。假阳性结果可能是在eDNA收集和分析的过程中受到污染,出现了该区域不可能出现的物种。研究人员需要规范实验操作、对分析结果加以区分和消除以及对测序数据进行生物信息学过
假阴性结果可能由许多因素引起,比如eDNA被稀释而导致无法检测、样品中的eDNA降解、采样工作和数据库不足、DNA条形码的错误识别、引物的标记选择不当、过滤次数和PCR次数不足
eDNA技术在深远海鱼类多样性研究成功运用的关键基础之一在于物种信息的准确鉴定,而这高度依赖于参考数据库的完整性和准确性。然而,目前常用的GenBank公共参考数据库存在许多未经校正、种类信息错误的序列,同时还存在部分分子标记对应的DNA片段匮乏甚至缺失等情况,如12S rRNA基因的序列片段。例如,FRAIJA-FERNÁNDEZ
因此,对种类信息不足的深远海开展鱼类eDNA调查前,推荐事先构建种类覆盖全面的本地参考
eDNA样本并不是一个独立的个体,它与所处的生态环境有着不可分割的联系,而海洋环境可能是应用eDNA技术最困难且最具挑战性的水域,这是因为水体积和生物量的悬殊比例、洋流和波浪等作用对eDNA分散和稀释的影响,环境中的温度、pH、紫外线等因素对eDNA保存和提取的影响
深远海作为海洋生态系统的重要组成部分,具有独特的生物多样性,且蕴含了丰富的渔业资源,因此对深远海鱼类多样性开展高效、准确的检测是开展渔业资源利用和管理的重要前提。传统的捕捞调查方式应用于深远海环境中有一定的局限性,需补充其他更经济、准确且高效的调查方式,以完善当前深远海鱼类多样性调查和监测方面存在的薄弱环节。eDNA应用于单物种分析中,可精准检测珍稀物种、濒危物种、外来物种或有商业价值的经济物种的分布,在特定条件下还可实现对目标生物的丰度和生物量的定量评估,并通过推断鱼类栖息地的分布、季节性迁徙和洄游路径等方式来监测鱼类行为;eDNA应用于多物种群落分析中,可揭示目标类群的生物多样性格局,在此基础上开展渔业资源调查、外来入侵物种的早期预警监测等工作内容;除此以外,eDNA既可实现定量评估鱼类群落组成,也具有开展群体遗传分析的重要应用潜力。基于eDNA在不同场景下的应用案例,本文认为eDNA在深远海鱼类多样性研究中,具有更广泛的应用场景、更突出的成本效益、更高的监测灵敏度和更精细的物种分辨率以及更低的分类阶元偏向性等关键应用优势。但需指出,eDNA技术在通用引物的扩增偏倚性和种属特异性、假阳性和假阴性、参考数据库的有效性和自然因素影响等问题上仍不乏各类实际挑战,需要综合考虑实际运用场景,提前做好规划和准备,并科学选取研究策略。
未来,eDNA技术可以作为传统调查方法的重要补充手段,有助于揭示鱼类群落在深远海的分布格局、变化趋势及其对全球气候变化下的响应,从而进一步支撑深远海环境下的生物多样性的保护与渔业资源养护管理。在未来应用中,如何与传统调查方法有效结合以及在充分考虑深远海独特的生态环境特征的前提下将结果合理转化是值得进一步深入探究的问题。
参考文献
LI C W, LONG H, YANG S L, et al. eDNA assessment of pelagic fish diversity, distribution, and abundance in the central Pacific Ocean[J]. Regional Studies in Marine Science, 2022, 56: 102661. [百度学术]
SUTER L, POLANOWSKI A M, CLARKE L J, et al. Capturing open ocean biodiversity: comparing environmental DNA metabarcoding to the continuous plankton recorder[J]. Molecular Ecology, 2021, 30(13): 3140-3157. [百度学术]
IRIGOIEN X, KLEVJER T A, RØSTAD A, et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean[J]. Nature Communications, 2014, 5(1): 3271. [百度学术]
徐奎栋. 印太交汇区海洋生物多样性中心形成演化机制研究进展与展望[J]. 海洋与湖沼, 2021, 52(2): 262-273. [百度学术]
XU K D. Formation and evolution mechanisms of marine biodiversity center in the Indo-Pacific convergence region: progress and prospects[J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 262-273. [百度学术]
PEARCY W G, STEIN D L, CARNEY R S. The deep-sea benthic fish fauna of the northeastern Pacific ocean on Cascadia and tufts abyssal plains and adjoining continental slopes[J]. Biological Oceanography, 1982, 1(4): 375-428. [百度学术]
CANALS O, MENDIBIL I, SANTOS M, et al. Vertical stratification of environmental DNA in the open ocean captures ecological patterns and behavior of deep‐sea fishes[J]. Limnology and Oceanography Letters, 2021, 6(6): 339-347. [百度学术]
唐小曼. 印度洋与太平洋大洋中层鱼类的调查[J]. 国外水产, 1986, 2: 25-27. [百度学术]
TANG X M. A survey of mesopelagic fish in the Indian and Pacific Oceans[J]. Foreign Journal of Aquaculture, 1986, 2: 25-27. [百度学术]
COUSINS N J, PRIEDE I G. Abyssal demersalfish fauna composition in two contrasting productivity regions of the Crozet Plateau, southern Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 64: 71-77. [百度学术]
王梦, 杨鑫, 王维, 等. 基于eDNA技术的长江上游珍稀特有鱼类国家级自然保护区重庆段鱼类多样性研究[J]. 水生生物学报, 2022, 46(1): 2-16. [百度学术]
WANG M, YANG X, WANG W, et al. Fish diversity in Chongqing section of the national nature reserve for rare and endemic fish in the Upper Yangtze River based on eDNAtechnology[J]. Acta Hydrobiologica Sinica, 2022, 46(1): 2-16. [百度学术]
卢芷程, 李敏, 张俊, 等. 基于DNA条形码的南海美济礁潟湖鱼卵种类鉴定与组成初探[J]. 南方水产科学, 2021, 17(6): 12-21. [百度学术]
LU Z C, LI M, ZHANG J, et al. Preliminary study on species composition of fish eggs of Meiji Reef Lagoon in South China Sea based on DNA barcoding[J]. South China Fisheries Science, 2021, 17(6): 12-21. [百度学术]
陈世静. 基于eDNA技术的西南大学崇德湖鱼类与浮游生物多样性研究[D]. 重庆: 西南大学, 2020. [百度学术]
CHEN S J. Analysis of the Fish and Plankton Diversity in Chongde Lake at Southwest University Using Environmental DNA Technology[D]. Chongqing: Southwest University, 2020. [百度学术]
YAO M, ZHANG S, LU Q, et al. Fishing for fish environmental DNA: ecological applications, methodological considerations, surveying designs, and ways forward[J]. Molecular Ecology, 2022, 31(20): 5132-5164. [百度学术]
XIONG F, SHU L, ZENG HH, et al. Methodology for fish biodiversity monitoring with environmental DNA metabarcoding: the primers, databases and bioinformatic pipelines[J]. Water Biology and Security, 2022, 1(1): 100007. [百度学术]
TABERLET P, COISSAC E, HAJIBABAEI M, et al. Environmental DNA[J]. Molecular Ecology, 2012, 21(8): 1789-1793. [百度学术]
LI J L. Development of an environmental DNA method for monitoring freshwater fish communities using metabarcoding[D]. Hull: University of Hull, 2019. [百度学术]
单秀娟, 李苗, 王伟继. 环境DNA(eDNA)技术在水生生态系统中的应用研究进展[J]. 渔业科学进展, 2018, 39(3): 23-29. [百度学术]
SHAN X J, LI M, WANG W J. Application of environmental DNA technology in aquatic ecosystem[J]. Progress in Fishery Sciences, 2018, 39(3): 23-29. [百度学术]
WANG X Y, ZHANG H B, LU G Q, et al. Detection of an invasive species through an environmental DNA approach: the example of the red drum Sciaenops ocellatus in the East China Sea[J]. Science of the Total Environment, 2022, 815: 152865. [百度学术]
WOOD Z T, ERDMAN B F, YORK G, et al. Experimental assessment of optimal lotic eDNA sampling and assay multiplexing for a critically endangered fish[J]. Environmental DNA, 2020, 2(4): 407-417. [百度学术]
BYLEMANS J, FURLAN E M, HARDY C M, et al. An environmental DNA‐based method for monitoring spawning activity: a case study, using the endangered Macquarie perch (Macquaria australasica)[J]. Methods in Ecology and Evolution, 2017, 8(5): 646-655. [百度学术]
WU L H, WU Q Q, INAGAWA T, et al. Estimating the spawning activity of fish species using nuclear and mitochondrial environmental DNA concentrations and their ratios[J]. Freshwater Biology, 2023, 68(1): 103-114. [百度学术]
FUJIWARA Y, TSUCHIDA S, KAWATO M, et al. Detection of the largest deep-sea-endemic teleost fish at depths of over 2,000 m through a combination of eDNA metabarcoding and baited camera observations[J]. Frontiers in Marine Science, 2022, 9: 945758. [百度学术]
FICETOLA G F, MIAUD C, POMPANON F, et al. Species detection using environmental DNA from water samples[J]. Biology Letters, 2008, 4(4): 423-425. [百度学术]
JO T, MURAKAMI H, YAMAMOTO S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution[J]. Ecology and Evolution, 2019, 9(3): 1135-1146. [百度学术]
SOUMA R, KATANO I, DOI H, et al. Comparing environmental DNA with whole pond survey to estimate the total biomass of fish species in ponds[J]. Freshwater Biology, 2023, 68(5): 727-736. [百度学术]
DOI H, TAKAHARA T, MINAMOTO T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species[J]. Environmental Science &Technology, 2015, 49(9): 5601-5608. [百度学术]
TAKEUCHI A, IIJIMA T, KAKUZEN W, et al. Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eelsfor interpretation of oceanic survey data[J]. Scientific Reports, 2019, 9(1): 6074. [百度学术]
RATCLIFFE F C, UREN WEBSTER T M, GARCIA DE LEANIZ C, et al. A drop in the ocean: monitoring fish communities in spawning areas using environmental DNA[J]. Environmental DNA, 2021, 3(1): 43-54. [百度学术]
BRACKEN F S A, ROONEY S M, KELLY-QUINN M, et al. Identifying spawning sites and other critical habitat in lotic systems using eDNA "snapshots": a case study using the sea lamprey Petromyzon marinus L.[J]. Ecology and Evolution, 2019, 9(1): 553-567. [百度学术]
THALINGER B, WOLF E, TRAUGOTT M, et al. Monitoring spawning migrations of potamodromous fish species via eDNA[J]. Scientific Reports, 2019, 9(1): 15388. [百度学术]
XU N, ZHU B, SHI F, et al. Monitoring seasonal distribution of an endangered anadromous sturgeon in a large river using environmental DNA[J]. The Science of Nature, 2018, 105(11): 62. [百度学术]
徐念, 熊美华, 邵科, 等. 长江中下游环境DNA宏条形码生物多样性检测技术初步研究[J]. 环境科学研究, 2020, 33(5): 1187-1196. [百度学术]
XU N, XIONG M H, SHAO K, et al. Preliminary study on environmental DNA metabarcoding for detecting biodiversity in the middle and lower reaches of the Yangtze River[J]. Research of Environmental Sciences, 2020, 33(5): 1187-1196. [百度学术]
李萌,尉婷婷,史博洋, 等. 环境DNA技术在淡水底栖大型无脊椎动物多样性监测中的应用[J]. 生物多样性, 2019, 27(5): 480-490. [百度学术]
LI M, WEI T T, SHI B Y, et al. Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA[J]. Biodiversity Science, 2019, 27(5): 480-490. [百度学术]
MUELLER M, PANDER J, KNOTT J, et al. Comparison of nine different methods to assess fish communities in lentic flood-plain habitats[J]. Journal of Fish Biology, 2017, 91(1): 144-174. [百度学术]
DEINER K, BIK H M, MÄCHLER E, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities[J]. Molecular Ecology, 2017, 26(21): 5872-5895. [百度学术]
LAMY T, PITZ K J, CHAVEZ F P, et al. Environmental DNA reveals the fine-grained and hierarchical spatial structure of kelp forest fish communities[J]. Scientific Reports, 2021, 11(1): 14439. [百度学术]
CHEANG CC, LEE B Y, IP B H Y, et al. Fish and crustacean biodiversity in an outer maritime estuary of the Pearl River Delta revealed by environmental DNA[J]. Marine Pollution Bulletin, 2020, 161: 111707. [百度学术]
YUKI H ,SHOTA N ,YUKI K, et al. Fish environmental DNA in Tokyo Bay: a feasibility study on the availability of environmental DNA for fisheries[J]. Regional Studies in Marine Science, 2021, 47: 101950. [百度学术]
WEST K M, STAT M, HARVEY E S, et al. eDNAmetabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem[J]. Molecular Ecology, 2020, 29(6): 1069-1086. [百度学术]
OKA S I, DOI H, MIYAMOTO K, et al. Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation[J]. Environmental DNA, 2021, 3(1): 55-69. [百度学术]
MIRIMIN L, DESMET S, ROMERO D L, et al. Don't catch me if you can - using cabled observatories as multidisciplinary platforms for marine fish community monitoring: an insitu case study combining underwater video and environmental DNA data[J]. Science of the Total Environment, 2021, 773: 145351. [百度学术]
TSUJI S, MIYA M, USHIO M, et al. Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: a case study using tank water[J]. Environmental DNA, 2020, 2(1): 42-52. [百度学术]
GOOD E, HOLMAN L E, PUSCEDDU A, et al. Detection of community-wide impacts of bottom trawl fishing on deep-sea assemblages using environmental DNA metabarcoding[J]. Marine Pollution Bulletin, 2022, 183: 114062. [百度学术]
TURON M, ANGULO-PRECKLER C, ANTICH A, et al. More than expected from old sponge samples: anatural sampler DNA metabarcodingassessment of marine fish diversity in NhaTrang Bay (Vietnam)[J]. Frontiers in Marine Science, 2020, 7: 605148. [百度学术]
SIGSGAARD E E, JENSEN M R, WINKELMANN I E, et al. Population-level inferences from environmental DNA-Current status and future perspectives[J]. Evolutionary Applications, 2020, 13(2): 245-262. [百度学术]
SIGSGAARD E E, NIELSEN I B, CARL H, et al. Seawater environmental DNA reflects seasonality of a coastal fish community[J]. Marine Biology, 2017, 164(6): 128. [百度学术]
TSUJI S, MARUYAMA A, MIYA M, et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population[J]. Molecular Ecology Resources, 2020, 20(5): 1248-1258. [百度学术]
TSUJI S, SHIBATA N, INUI R, et al. Environmental DNA phylogeography: successful reconstruction of phylogeographic patterns of multiple fish species from cups of water[J]. Molecular Ecology Resources, 2023, 23(5): 1050-1065. [百度学术]
DJURHUUS A, CLOSEK C J, KELLY R P, et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community[J]. Nature Communications, 2020, 11(1): 254. [百度学术]
MATHON L, MARQUES V, MOUILLOT D, et al. Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcoding[J]. Proceedings of the Royal Society B:Biological Sciences, 2022, 289(1973): 20220162. [百度学术]
MCCLENAGHAN B, FAHNER N, COTE D, et al. Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes[J]. PLoS One, 2020, 15(11): e0236540. [百度学术]
LACOURSIÈRE-ROUSSEL A, HOWLAND K, NORMANDEAU E, et al. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity[J]. Ecology and Evolution, 2018, 8(16): 7763-7777. [百度学术]
SHELTON A O, RAMÓN-LACA A, WELLS A, et al. Environmental DNA provides quantitative estimates of Pacific hake abundance and distribution in the open ocean[J]. Proceedings of the Royal Society B: Biological Sciences, 2022, 289(1971): 20212613. [百度学术]
SALTER I, JOENSEN M, KRISTIANSEN R, et al. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters[J]. Communications Biology, 2019, 2(1): 461. [百度学术]
LAROCHE O, KERSTEN O, SMITH C R, et al. Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion Clipperton Zone[J]. Molecular Ecology, 2020, 29(23): 4588-4604. [百度学术]
TORRES M Á, COLL M, HEYMANS J J, et al. Food-web structure of and fishing impacts on the Gulf of Cadiz ecosystem (South-western Spain)[J]. Ecological Modelling, 2013, 265: 26-44. [百度学术]
THOMSEN P F, KIELGAST J, IVERSEN L L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8): e41732. [百度学术]
VERON P, ROZANSKI R, MARQUES V, et al. Environmental DNA complements scientific trawling in surveys of marine fish biodiversity[J]. ICES Journal of Marine Science, 2023, 80(8): 2150-2165. [百度学术]
DIAO C Y, WANG M X, ZHONG Z S, et al. Biodiversity exploration of formosa ridge cold seep in the South China Sea using an eDNA metabarcoding approach[J]. Marine Environmental Research, 2023, 190: 106109. [百度学术]
DOI H, FUKAYA K, OKA S I, et al. Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model[J]. Scientific Reports, 2019, 9(1): 3581. [百度学术]
YAMAMOTO S, MINAMI K, FUKAYA K, et al. Environmental DNA as a 'snapshot' of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, sea of Japan[J]. PLoS One, 2016, 11(3): e0149786. [百度学术]
YOSHITAKE K, FUJIWARA A, MATSUURA A, et al. Estimation of tuna population by the improved analytical pipeline of unique molecular identifier-assisted HaCeD-Seq (haplotype count from eDNA)[J]. Scientific Reports, 2021, 11(1): 7031. [百度学术]
WESTFALL K M, THERRIAULT T W, ABBOTT C L. A new approach to molecular biosurveillance of invasive species using DNA metabarcoding[J]. Global Change Biology, 2020, 26(2): 1012-1022. [百度学术]
FRAIJA‐FERNÁNDEZ N, BOUQUIEAUX M C, REY A, et al. Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area[J]. Ecology and Evolution, 2020, 10(14): 7560-7584. [百度学术]
RAMÍREZ-AMARO S, BASSITTA M, PICORNELL A, et al. Environmental DNA: state-of-the-art of its application for fisheries assessment in marine environments[J]. Frontiers in Marine Science, 2022, 9: 1004674. [百度学术]
VALDIVIA‐CARRILLO T, ROCHA‐OLIVARES A, REYES‐BONILLA H, et al. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot[J]. Molecular Ecology Resources, 2021, 21(5): 1558-1574. [百度学术]
AGLIERI G, BAILLIE C, MARIANI S, et al. Environmental DNA effectively captures functional diversity of coastal fish communities[J]. Molecular Ecology, 2021, 30(13): 3127-3139. [百度学术]
MIYA M. Environmental DNA metabarcoding: a novel method for biodiversity monitoring of marine fish communities[J]. Annual Review of Marine Science, 2022, 14: 161-185. [百度学术]
MIYA M, GOTOH R O, SADO T. MiFishmetabarcoding: a high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples[J]. Fisheries Science, 2020, 86(6): 939-970. [百度学术]
MORITA K, SAHASHI G, MIYA M, et al. Ongoing localized extinctions of stream-dwelling white-spotted charr populations in small dammed-off habitats of Hokkaido Island, Japan[J]. Hydrobiologia, 2019, 840(1): 207-213. [百度学术]
MIN M A, BARBER P H, GOLD Z. MiSebastes: an eDNA metabarcoding primer set for rockfishes (genus Sebastes)[J]. Conservation Genetics Resources, 2021, 13(4): 447-456. [百度学术]
LIAO Y Z, MIAO X, WANG R, et al. First pelagic fish biodiversity assessment of Cosmonaut Sea based on environmental DNA[J]. Marine Environmental Research, 2023, 192: 106225. [百度学术]
POLANCO F. A, RICHARDS E, FLÜCK B, et al. Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems[J]. Environmental DNA, 2021, 3(6): 1113-1127. [百度学术]
MERTEN V, PUEBLA O, BAYER T, et al. Arctic nekton uncovered by eDNA metabarcoding: diversity, potential range expansions, and pelagic‐benthic coupling[J]. Environmental DNA, 2023, 5(3): 503-518. [百度学术]
KAWAKAMI T, YAMAZAKI A, ASAMI M, et al. Evaluating the sampling effort for the metabarcoding‐based detection of fish environmental DNA in the open ocean[J]. Ecology and Evolution, 2023, 13(3): e9921. [百度学术]
HANSEN B K, BEKKEVOLD D, CLAUSEN L W, et al. The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries[J]. Fish and Fisheries, 2018, 19(5): 751-768. [百度学术]
JEUNEN G J, LAMARE M D, KNAPP M, et al. Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal[J]. Environmental DNA, 2020, 2(1): 99-111. [百度学术]
KAWATO M, YOSHIDA T, MIYA M, et al. Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish[J]. MethodsX, 2021, 8: 101238. [百度学术]
WU Q Q, MINAMOTO T. Improvement of recovery yield of macro-organismal environmental DNA from seawater samples[J]. Analytical Sciences, 2023, 39(5): 713-720. [百度学术]