摘要
鳀(Engraulis japonicus)是黄海海域重要的捕捞对象,也是蓝点马鲛(Scomberomorus niphonius)等大型鱼类的主要饵料。探究鳀早期生活史阶段的分布及生长特征,是深入了解鳀补充机制的重要基础。基于2019年夏季黄海中部断面(119.7°E~123.5°E,35.5°N~36.5°N)调查数据,探究了鳀鱼卵、仔稚鱼的分布特征;分析比较了5种分布模型,选取Tweedie GAM模型研究了鳀鱼卵、仔稚鱼分布与环境因子的关系;基于鳀仔稚鱼耳石微结构分析,估算了鳀仔稚鱼的日龄和体长组成,逆推孵化日期,构建幂函数早期生长方程。结果显示,2019年夏季在山东半岛南部35.5°N断面海域形成鳀鱼卵的密集分布区,仔稚鱼密集分布区为123.5°E、35.5°~36.5°N纵向断面海域。盐度对鱼卵、仔稚鱼的分布都有显著影响,最适盐度为30~32;温度仅对鱼卵的分布有显著影响,最适温度为23~26 ℃。本研究共鉴定和分析211尾鳀仔稚鱼的日龄,体长为4~24 mm,优势体长组为12~14 mm,日龄为12~40 d,优势日龄组为18~20 d;耳石增长率为3.08~5.90 μm/d,其变化趋势在2个航次间差异显著,这可能与月份间的温度差异有关。本研究为鳀资源的早期生长和补充机制提供了科学依据。
鳀(Engraulis japonicus)隶属于鲱形目(Clupeiformes)鳀科(Engraulidae)鳀属(Engraulis),俗称“离水烂”、“鲅鱼食”、“海蜒”等,广泛分布于西北太平洋,是我国近海的关键
黄海近岸是鳀传统的产卵场之
基于2019年7月和8月两个航次的黄海中部近岸断面调查数据,探究鳀早期生活史阶段鱼卵和仔稚鱼的分布特征及其与环境因子的关系,同时结合鳀仔稚鱼耳石微结构,分析鳀仔稚鱼的日龄和体长组成,并逆推其孵化日期,构建早期生长方程,阐明鳀早期生长速率的差异,为其早期补充过程和资源保护及生态、生物学的研究提供基础资料。
鳀鱼卵、仔稚鱼样品以及环境数据来源于2019年在黄海中部海域进行的断面调查。调查海域为119.7°E~123.5°E和35.5°N~36.5°N,共计两个航次,时间分别为7月9—16日、8月14—21日。两个航次站位如

图1 2019年7、8月航次调查海域和站位设置
Fig.1 Study area and spatial distribution of survey stations in July and August 2019
航次 Cruises | 站位数量 Number of stations | 采样日期 Sampling date | 卵数量 Number of egg/ind. | 仔稚鱼数量 Number of larvae and juveniles/ind. |
|---|---|---|---|---|
| 2019年7月 | 47 | 7月9—16日 | 77 827 | 76 |
| 2019年8月 | 42 | 8月14—21日 | 391 | 205 |
调查网具网口配有流量计记录拖网过程中的滤水量,采样各站位同步采集环境因子数据,环境因子的采集使用Sea & Sun Tech CTD 60,测定的环境因子有海表面温度(Sea surface temperature,SST)、海表面盐度(Sea surface salinity,SSS)、海表面叶绿素质量浓度(Sea surface chlorophyll-a,SCHL)和水深(Depth)。
从2019年采集的鳀仔稚鱼样品中,随机选取211尾仔稚鱼进行了耳石微结构分析。首先用目微尺在解剖镜下测量鳀仔稚鱼体长,即吻端到脊索末端的长度,精确到0.1 mm,然后在解剖镜下用解剖针挑开仔稚鱼头部取出较大的矢耳石放置在载玻片上,清理干净组织、黏液等杂物,将紫外光固化胶(Ultraviolet Rays)滴在耳石上并用紫外线灯照射10 s左右,最后在奥林巴斯显微镜(BX53F)下放大400×观察,并拍照保存。根据耳石的对称性,随机取左右矢耳石之一进行计
应用Image J软件测量矢耳石最大半径(Otolith radius,OR),精确到0.1 μm。日龄的计数从清晰可见的第1条轮纹开始,每个样本由同一个人间隔1个月读取两次,两次结果一致,则直接用于后续的数据分析,若两次读数结果不一致,则检查样本,再次进行读数,若仍然不一致则弃之不用。
鳀鱼卵/仔稚鱼密度单位为每100立方米水体中出现的鳀鱼卵/仔稚鱼粒/尾数(ind./100
| (1) |
| (2) |
式中:P为单位体积海水里鳀鱼卵/仔稚鱼粒/尾数,ind./100
广义加性模型(Generalized additive model,GAM)可以在不进行参数估计的前提下,用于分析因变量和多个自变量的关
首先对鱼卵和仔稚鱼数据进行lg(x+1)的转化,单位:ind./100
在构建5种分布模型的最优模型过程中,结合赤池信息量准则(Akaike information criterion,AIC
利用交叉验证的方法依次对5种分布模型的最优模型进行检验,将原始数据集分为训练集(随机抽取原始数据的70%来拟合模型)和验证集(剩下的30%进行验证),对训练集得到的预测值和验证集的真实观测值进行线性回归并重复操作100次得到均方根误差(Root mean squared error,RMSE)和拟合系数
基于耳石微结构分析,有多种形式的生长模型适用于鱼类的早期生长,本研究选用线性生长方程、指数生长方程、对数生长方程、幂函数生长方程、Logistic生长方程、Gompertz生长方程和Von Bertalanffy生长方程
线性生长方程:
| (3) |
指数生长方程:
| (4) |
对数生长方程:
| (5) |
幂函数生长方程:
| (6) |
Logistic生长方程:
| (7) |
Gompertz生长方程:
| (8) |
Von Bertalanffy生长方程:
| (9) |
式中:Lt为体长,mm;t为日龄,d;L0为日龄为0时的理论体长;L∞为渐近体长;t0为鱼类体长为0时的理论日龄;k为相对生长速率的参数;a、b、g、h为常数。
通过拟合系数
| (10) |
式中:IAIC为赤池信息准则AIC值;n为样本数量;SRSS为残差平方和;k为生长方程中参数个数。
两个调查航次共采集到78 218粒鱼卵和281尾仔稚鱼(

图2 7、8月航次鱼卵和仔稚鱼密度分布及其与海表面温度(a,c)、盐度(b,d)间的关系
Fig.2 Density distribution of anchovy eggs, larvae and juveniles in July and August voyages and its relationship with sea surface temperature(a,c) and salinity(b,d)
方差膨胀因子(VIF)分析表明在所有因子中,水深与其他因子存在较强共线性,因此将水深因子舍去,其他因子加入模型变量进一步筛选。结合AIC值和方差解释率对模型中的因子再次筛选,分别得到5种分布模型的最优模型(
分布模型 Distribution model | 最优模型表达式 Expression of optimal model | 赤池信息准则 AIC | 拟合系数 R² | 均方根误差 RMSE | 方差解释率 Variance explanation/% |
|---|---|---|---|---|---|
|
Tweedie分布GAM Tweedie distribution GAM | Y=s(XSST)+s(XDistance)+s(XSSS)+s(XLon,Lat) | 198.105 | 0.250 | 0.692 | 30.40 |
|
Gamma分布GAM Gamma distribution GAM | Y=s(XDistance)+s(XSST)+s(XSSS)+s(XLon,Lat) | 570.307 | 0.535 | 901.411 | 80.20 |
|
Log正态分布GAM Logarithmic normal distribution GAM | Y=s(XSST)+s(XSSS)+s(XLon,Lat) | 187.163 | 0.213 | 0.730 | 42.70 |
|
0-1分布GAM 0-1 distribution GAM | Y=s(XSST)+s(XSSS) | 144.597 | 0.092 | 0.747 | 11.90 |
|
随机森林模型 Random forest model | Y=s(XDistance)+s(XSST)+s(XSSS)+s(XLon)+s(XLat) | - | 0.185 | 0.719 | 21.04 |
注: Y为响应变量;s为自然样条平滑函数;Distance为离岸距离;SST为海水表层温度;SSS为海水表层盐度;Lon,Lat为经纬度交互项;Lon为经度;Lat为纬度。
Notes: Y indicates response variables; X indicates nature spline smoothing function; Distance indicates offshore distance; SST indicates sea surface temperature; SSS indicates sea surface salinity; Lon,Lat indicates interactions of longitude and latitude; Lon indicates longitude; Lat indicates latitude.
鱼卵/仔稚鱼 Eggs/Larvae and juveniles | 因子 Factors | P值 P value | 鱼卵/仔稚鱼 Eggs/Larvae and juveniles | 加入的因子 Added factors | 累计方差解释率 Accumulation of variance explanation/% | 贡献率 Importance/% | 赤池信息准则 AIC |
|---|---|---|---|---|---|---|---|
|
鱼卵 Eggs | 海表面温度SST | 0.012* |
鱼卵 Eggs | 海表面温度SST | 5.13 | 5.13 | 208.813 |
| 离岸距离Distance | 0.036* | +离岸距离Distance | 12.60 | 7.47 | 205.290 | ||
| 海表面盐度SSS | 0.043* | +海表面盐度SSS | 24.50 | 11.90 | 200.532 | ||
| 经纬度交互项Lon,Lat | 0.071 | +经纬度交互项Lon,Lat | 30.40 | 5.90 | 198.105 | ||
|
仔稚鱼 Larvae and juveniles | 经纬度交互项Lon,Lat | 0.001*** |
仔稚鱼 Larvae and juveniles | 经纬度交互项Lon,Lat | 62.80 | 62.80 | 58.790 |
| 海表面盐度SSS | 0.044* | +海表面盐度SSS | 75.20 | 12.40 | 51.150 |
注: “*”表示在0.05置信水平下显著;“**”表示在0.01置信水平下显著;“***”表示在0.001置信水平下显著;Distance表示离岸距离;SST表示海水表层温度;SSS表示海水表层盐度;Lon,Lat表示经纬度交互项;“+”表示添加变量。
Notes: “*”indicates that the p value is obvious at the 0.05 confidence interval; “**”indicates that the p value is obvious at the 0.01 confidence interval;“***”indicates that the p value is obvious at the 0.001 confidence interval; Distance indicates offshore distance; SST indicates sea surface temperature; SSS indicates sea surface salinity; Lon,Lat indicates interactions of longitude and latitude; “+”indicates adding variables.
鱼卵最优Tweedie GAM模型的累积方差解释率为30.40%,其中海表面温度、离岸距离、海表面盐度、经纬度交互项的贡献率分别为5.13%、7.47%、11.90%、5.90%(
基于鱼卵密度调查数据的Tweedie GAM模型结果中(

图3 基于鱼卵密度调查数据的Tweedie GAM模型结果
Fig.3 Results of Tweedie GAM model on the survey data of anchovy eggs density
-1se.区间下限;+1se.区间上限;红色线.0值水平线。
-1se.The lower limit of the interval; +1se.The upper limit of the interval; Red line.0-value horizontal line.
基于仔稚鱼密度调查数据的Tweedie GAM模型结果显示(

图4 基于仔稚鱼密度调查数据的Tweedie GAM模型结果
Fig.4 Results of Tweedie GAM model on the survey data of anchovy larvae and juveniles density
-1se.区间下限;+1se.区间上限;红色线.0值水平线。
-1se.The lower limit of the interval; +1se.The upper limit of the interval; Red line.0-value horizontal line.
7月航次捕获的鳀仔稚鱼体长为12~22 mm,平均体长为(14.88±2.20) mm,优势体长组为12~14 mm(

图5 7、8月航次鳀仔稚鱼体长、日龄组成
Fig.5 Composition of standard length and daily age of anchovy larvae and juveniles in July and August voyages
航次 Cruises | 日龄鉴定尾数 Number of otolith measurement/ind. | 平均体长±标准差 Mean length±SD/mm | 平均日龄±标准差Average age±SD/d | 平均耳石半径±标准差 Average otolith radius±SD/μm |
|---|---|---|---|---|
| 2019年7月 | 69 | 14.88±2.20 | 22.54±4.20 | 80.44±24.60 |
| 2019年8月 | 142 | 13.34±3.00 | 22.72±6.00 | 84.60±33.20 |
基于耳石微结构分析得到的日龄和捕获日期,逆推得到211个样本的孵化日期分布(

图6 7、8月航次鳀仔稚鱼孵化个体数分布
Fig.6 Distribution of hatched individuals of of anchovy larvae and juveniles in July and August voyages

图7 7、8月航次鳀仔稚鱼体长与耳石半径之间的关系
Fig.7 Relationship between length of anchovy larvae and juveniles and otolith radius in July and August voyages
仔稚鱼体长与耳石半径呈明显的线性相关关系(

图8 7、8月航次鳀仔稚鱼耳石增长率变化特征
Fig.8 Variation characteristics of otolith growth rate of anchovy larvae and juveniles in July and August voyages
采用7种生长模型对鳀仔稚鱼的体长和日龄进行拟合(
生长方程 Growth equation | L∞/L0 | a/k/h | b/t0/g | 拟合系数 | 赤池信息准则 AIC |
|---|---|---|---|---|---|
| 线性生长方程Linear growth equation | - | 0.461 | 3.388 | 0.798 | 104.961 |
| 指数生长方程Exponential growth equation | - | 6.814 | 0.031 | 0.787 | 116.352 |
| 对数生长方程Logarithmic growth equation | - | 10.773 | -19.476 | 0.794 | 109.817 |
| 幂函数生长方程Power-exponential growth equation | - | 1.292 | 0.762 | 0.799 | 103.755 |
| Logistic生长方程Logistic growth equation | 29.484 | 0.064 | 24.590 | 0.795 | 109.628 |
| Gompertz生长方程Gompertz growth equation | 2.520 | 0.996 | -0.031 | 0.786 | 118.352 |
| Von Bertalanffy生长方程Von Bertalanffy growth equation | 70.533 | 0.008 | -3.856 | 0.798 | 106.425 |
注: L0为日龄为0时的理论体长;L∞为渐近体长;t0为鱼类体长为0时的理论日龄;k为相对生长速率的参数;a、b、g、h为常数。
Notes: L0 is the theoretical body length at the age of 0; L∞ is the asymptotic body length; t0 is the theoretical age of fish when its body length is 0; k is the parameter of relative growth rate; a,b,g,h are constants.

图9 7、8月航次鳀仔稚鱼体长与日龄的关系
Fig.9 Relationship between standard length and age of anchovy larvae and juveniles in July and August voyages
结果显示,鱼卵密度最高的区域出现在山东半岛南部35.5°N断面海域,原因可能是:(1)每年5—7月鳀鱼卵随着潮汐锋向浅水区域移动,黄海中部由于等深线剧烈弯曲而形成的涡旋的存在,可能导致鱼卵在该区域聚
温度是影响鱼类洄游分布、集群、产卵和生长发育的重要环境因
值得注意的是采样位置因子均出现在鱼卵和仔稚鱼的最优Tweedie GAM模型中,这可能是因为本研究调查海域位于近岸,不仅是夏季黄海冷水团覆盖区,并且在近岸与离岸海域之间的过渡地带,会因为地形作用以及潮汐混合的空间变化形成潮汐
鱼卵最优Tweedie GAM分布模型的方差解释率为30.40%,模型拟合效果较好;仔稚鱼最优Tweedie GAM分布模型的方差解释率为75.20%,解释率较大,存在过度拟合的风险。这可能是由于在7、8月份鳀鱼进入索饵期,仔稚鱼相比鱼卵已经具备主动索饵的能力并向深水区移动,而本研究调查海域在黄海中部近岸,仔稚鱼相比鱼卵0值数据过多,过多的0值也会增加估计模型参数的偏差和不确定
鳀仔稚鱼耳石微结构的研究结果表明体长与耳石半径之间存在显著的正相关关系,本结果与孟田
调查期间,在35.5°N和123.5°E、35.5°N~36.5°N断面海域分别形成鳀鱼卵和仔稚鱼密集分布区。最优Tweedie GAM分布模型显示盐度对鱼卵和仔稚鱼的分布都有显著影响,最适盐度为30~32;温度仅对鱼卵的分布有显著影响,最适温度为23~26 ℃。2个航次捕获的鳀仔稚鱼的孵化日期分别集中在6月15日—6月25日、7月14日—8月2日,孵化日期没有明显的峰值,且随着孵化日期的推后,孵化数量逐渐增多。鳀仔稚鱼体长为4~24 mm,优势体长组为12~14 mm,日龄为12~40 d,优势日龄组为18~20 d,耳石增长率为3.08~5.90 μm/d。鳀仔稚鱼体长与日龄的关系符合幂函数生长方程。
本研究一定程度上补充了鳀早期生活史阶段的基础资料,但仍然存在一些不足需要在后续的研究中深入。一是样品时间跨度小,未能涵盖鳀的整个产卵盛季,站位设置也较为固定,无法对不同海域的样本进行比较;二是调查获取的环境因子虽然能在一定程度上反映环境变化对鳀鱼卵和仔稚鱼分布的影响,但缺乏海流、气候因子等相关数据。
参考文献
韦晟, 姜卫民. 黄海鱼类食物网的研究[J]. 海洋与湖沼, 1992, 23(2):182-192. [百度学术]
WEI S, JIANG W M. Study on food web of fishes in the Yellow Sea[J]. Oceanologiaet Limnologia Sinica, 1992, 23(2):182-192. [百度学术]
李向心. 基于个体发育的黄渤海鳀鱼种群动态模型研究[D].青岛: 中国海洋大学, 2007. [百度学术]
LI X X. Study on individual-based model of anchovy population dynamics in the Huanghai Sea and Bohai Sea[D]. Qingdao: Ocean University of China, 2007. [百度学术]
TAKESHIGE A, MIYAKE Y, NAKATA H, et al. Effect of wind stress on the catch of Japanese anchovy Engraulis japonicus off northwestern Kyushu, Japan[J]. Fisheries Science, 2013, 79(6):989-998. [百度学术]
TAKESHIGE A, MIYAKE Y, NAKATA H, et al. Simulation of the impact of climate change on the egg and larval transport of Japanese anchovy (Engraulis japonicus) off Kyushu Island, the western coast of Japan[J]. Fisheries Oceanography, 2015, 24(5):445-462. [百度学术]
HJORT J. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research[C]. ICES, 1914. [百度学术]
汪珂, 刘凯, 徐东坡, 等. 鱼类早期资源研究进展[J]. 江西农业大学学报, 2013, 35(5):1098-1107. [百度学术]
WANG K, LIU K, XU D P, et al. Advances in research on early life resources of fish[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(5): 1098-1107. [百度学术]
TSUJI S, AOYAMA T. Daily growth increments in otoliths of Japanese anchovy larvae Engraulis japonica[J]. Nippon Suisan Gakkaishi, 1984, 50(7): 1105-1108. [百度学术]
TAKAHASHI M, WATANABE Y, KINOSHITA T, et al. Growth of larval and early juvenile Japanese anchovy, Engraulis japonicus, in the Kuroshio-Oyashio transition region[J]. Fisheries Oceanography, 2001, 10(2): 235-247. [百度学术]
TAKASUKA A, AOKI I, MITANI I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay[J]. Marine Ecology ProgressSeries, 2003, 252: 223-238. [百度学术]
TAKASUKA A, AOKI I. Environmental determinants of growth rates for larval Japanese anchovy Engraulis japonicus in different waters[J]. Fisheries Oceanography, 2006, 15(2): 139-149. [百度学术]
YASUE N, TAKASUKA A. Seasonal variability in growth of larval Japanese anchovy Engraulis japonicus driven by fluctuations in sea temperature in the Kii Channel, Japan[J]. Journal of Fish Biology, 2009, 74(10): 2250-2268. [百度学术]
YAMAMOTO K, SAITO M, YAMASHITA Y. Relationships between the daily growth rate of Japanese anchovy Engraulis japonicus larvae and environmental factors in Osaka Bay, Seto Inland Sea, Japan[J]. Fisheries Science, 2018, 84(2): 373-383. [百度学术]
陈介康. 黄海北部日本鳀鱼食性的研究[R]. 辽宁省海洋水产研究所调查报告, 1978, 43: 1-11. [百度学术]
CHEN J K. Studies on the feeding of anchovy (Engraulis japonicus) in the Northern Yellow Sea[R]. Cruise Report of Liaoning Marine Fisheries Research Institute, 1978, 43: 1-11. [百度学术]
李培军, 秦玉江, 陈介康. 黄海北部日本鳀的年龄与生长[J]. 水产科学, 1982(1): 1-5. [百度学术]
LI P J, QIN Y J, CHEN J K. Age and growth of anchovy Engraulis japonicus in northern Yellow Sea[J]. Fisheries Science, 1982(1): 1-5. [百度学术]
YU H T, LEE Y J, HUANG S W, et al. Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA[J]. Marine Biotechnology, 2002, 4(5): 471-479. [百度学术]
ZHAO X, HAMRE J, LI F, et al. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy(Engraulis japonicus) stock in the Yellow Sea in the 1990s[J]. Fisheries Oceanography, 2003, 12(4/5): 495-501. [百度学术]
孟田湘. 山东半岛南部产卵场鳀鱼幼体日龄组成与生长[J]. 海洋水产研究, 2004, 25(2): 1-5. [百度学术]
MENG T X. Daily age composition and growth rate of Japanese anchovy (Engraulis japonicus) larvae in the southern waters of Shandong Peninsula[J]. Progress in Fishery Sciences, 2004, 25(2): 1-5. [百度学术]
牛明香. 基于海洋遥感和GIS的黄海鳀鱼种群时空动态及对海洋环境因子的响应[D]. 泰安: 山东农业大学, 2012. [百度学术]
NIU M X. Spatiotemporal dynamics of anchovy population and its response to environmental factors in the Yellow Sea based on ocean RS and GIS[D]. Taian: Shandong Agricultural University, 2012. [百度学术]
牛明香, 王俊, 袁伟, 等. 黄海鳀鱼时空分布季节差异分析[J]. 生态学杂志, 2013, 32(1): 114-121. [百度学术]
NIU M X, WANG J, YUAN W, etal. Seasonal dissimilarity of Engraulis japonicus spatiotemporal distribution in Yellow Sea[J]. Chinese Journal of Ecology, 2013, 32(1): 114-121. [百度学术]
朱文斌, 朱海晨, 王雅丽, 等. 基于线性混合效应模型的日本鳀幼鱼叉长-体重关系异质性[J]. 应用生态学报, 2021, 32(12): 4532-4538. [百度学术]
ZHU W B, ZHU H C, WANG Y L, et al. Heterogeneity of fork length-weight relationship for juvenile Engraulis japonius based on linear mixed-effects models[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4532-4538. [百度学术]
朱文斌, 朱海晨, 张亚洲, 等. 浙江沿岸日本鳀幼鱼数量分布及其与环境因子的关系[J]. 中国水产科学, 2021, 28(9): 1175-1183. [百度学术]
ZHU W B, ZHU H C, ZHANG Y Z, et al. Quantitative distribution of juvenile Engraulis japonicus and the relationship with environmental factors along the Zhejiang coast[J]. Journal of Fishery Sciences of China, 2021, 28(9): 1175-1183. [百度学术]
李秀梅, 叶振江, 李增光, 等. 黄海中部近岸产卵场日本鳀卵子大小的时空变化[J]. 中国海洋大学学报, 2016, 46(2): 54-60. [百度学术]
LI X M, YE Z J, LI Z G, et al. Spatial and temporal changes of the egg size of Japanese anchovy (Engraulis japonicus) inhabiting the near shore spawning ground of central Yellow Sea[J]. Periodical of Ocean University of China, 2016, 46(2): 54-60. [百度学术]
万瑞景, 魏皓, 孙珊, 等. 山东半岛南部产卵场鳀鱼的产卵生态Ⅰ.鳀鱼鱼卵和仔稚幼鱼的数量与分布特征[J]. 动物学报, 2008, 54(5): 785-797. [百度学术]
WAN R J, WEI H, SUN S, et al. Spawning ecology of the anchovy Engraulis japonicus in the spawning ground of the Southern Shandong Peninsula Ⅰ. Abundance and distribution characters of anchovy eggs and larva[J]. Acta ZoologicaSinica, 2008, 54(5): 785-797. [百度学术]
叶懋中, 章隼. 黄渤海区鳀鱼的分布、洄游和探察方法[J]. 水产学报, 1965, 2(2): 27-34. [百度学术]
YE M Z, ZHANG S.The distribution and behaviour of Engraulis japonicusTemminck and Schlegel and its detection in the North China Seas(Hwang-Hai and Po-Hai)[J]. Journal of Fisheries of China, 1965, 2(2): 27-34. [百度学术]
张仁斋, 陆穗芬. 中国近海鱼卵与仔鱼[M]. 上海: 上海科学技术出版社, 1985. [百度学术]
ZHANG R Z, LU S F, et al. Fish eggs and larvae in offshore waters of China[M]. Shanghai: Shanghai Science and Technology Press, 1985. [百度学术]
姜言伟. 海州湾经济鱼类产卵场鱼卵的数量分布[J]. 海洋水产研究丛刊, 1964, 18: 100-111. [百度学术]
JIANG Y W. The quantity distribution of economic fish eggs in Haizhou Bay[J]. Journal of Marine Fisheries Research, 1964, 18: 100-111. [百度学术]
万瑞景, 曾定勇, 卞晓东, 等. 东海生态系统中鱼卵、仔稚鱼种类组成、数量分布及其与环境因素的关系[J]. 水产学报, 2014, 38(9): 1375-1398. [百度学术]
WAN R J, ZENG D Y, BIAN X D, et al. Species composition and abundance distribution pattern of ichthyoplankton and their relationship with environmental factors in the East China Sea ecosystem[J]. Journal of Fisheries of China, 2014, 38(9): 1375-1398. [百度学术]
LIN C, NING X, SU J, et al. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000[J]. Journal of Marine Systems, 2005, 55(3/4): 223-234. [百度学术]
罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报, 2012, 42(10):19-25. [百度学术]
LUO X F, WEI H, YUAN C Y. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19-25. [百度学术]
谭红建, 蔡榕硕, 黄荣辉. 中国近海海表温度对气候变暖及暂缓的显著响应[J]. 气候变化研究进展, 2016, 12(6): 500-507. [百度学术]
TAN H J, CAI R S, HUANG R H. Enhanced responses of sea surface temperature over offshore China to global warming and hiatus[J]. Climate Change Research, 2016, 12(6): 500-507. [百度学术]
国家海洋局. GB/T 12763.6-2007 海洋调查规范第6部分:海洋生物调查[S]. 北京:中国标准出版社, 2008: 168. [百度学术]
State Oceanic Administration. GB/T12763.6-2007 Specifi-cations for Oceanographic Survey-Part 6:marine biological survey[S]. Beijing:Standards Press of China, 2008: 168. [百度学术]
FUKUHARA O. Development and growth of laboratory reared Engraulis japonica (Houttuyn) larvae[J]. Journal of Fish Biology, 1983, 23(6): 641-652. [百度学术]
江素菲, 郑小衍. 闽南—台湾浅滩渔场鯷鱼卵和仔鱼的形态特征及其产卵场[J]. 台湾海峡, 1984(2): 224-231. [百度学术]
JIANG S F, ZHENG X Y. The morphological characters of eggs and larvae of Engraulis japonicus Temminck et Schlegel and its spawning areas in the fishing ground of the South Fujian and Taiwan Bank[J]. Taiwan Strait, 1984(2): 224-231. [百度学术]
万瑞景, 姜言伟. 渤海硬骨鱼类鱼卵和仔稚鱼分布及其动态变化[J]. 中国水产科学, 1998, 5(1): 43-50. [百度学术]
WAN R J, JIANG Y W.The distribution and variation of eggs and larvae of osteichthyes in the Bohai Sea[J]. Journal of Fishery Sciences of China, 1998, 5(1): 43-50. [百度学术]
万瑞景, 姜言伟. 渤黄海硬骨鱼类鱼卵与仔稚鱼种类组成及其生物学特征[J]. 上海水产大学学报, 2000, 9(4): 290-297 [百度学术]
WAN R J, JIANG Y W.The species and biological characteristics of the eggs and larvae of osteichthyes in the Bohai Seaand Yellow Sea[J]. Journal of Shanghai Fisheries University, 2000, 9(4): 290-297. [百度学术]
万瑞景, 赵宪勇, 魏皓. 山东半岛南部产卵场鳀鱼的产卵生态Ⅱ.鳀鱼的产卵习性和胚胎发育特性[J]. 动物学报, 2008, 54(6): 988-997. [百度学术]
WAN R J, ZHAOX Y, WEI H. Spawning ecology of the anchovy Engraulis japonicus in the spawning ground of the Southern Shandong PeninsulaⅡ.spawning habits and embryonic developmental characteristics of the anchovy[J].Acta ZoologicaSinica, 2008, 54(6): 988-997. [百度学术]
WANG Y T, TZENG W N. Differences in growth rates among cohorts of Encrasicholinapunctifer and Engraulis japonicus larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis[J]. Journal of Fish Biology, 1999, 54(5): 1002-1016. [百度学术]
国家海洋局. GB17378.7—2007海洋监测规范第7部分:近海污染生态调查和生物监测[S]. 北京:中国标准出版社, 2008. [百度学术]
State Oceanic Administration. GB17378.7-2007 The specification for marine monitoring-Part 7:Ecological survey for offshore pollution and biological monitoring[S]. Beijing:Standards Press of China, 2008. [百度学术]
BELLIDO J M, PIERCE G J, WANG J. Modelling intra-annual variation in abundance of squid Loligo forbesi in Scottish waters using generalised additive models[J]. Fisheries Research, 2001, 52(1/2): 23-39. [百度学术]
LINDNER C, BROMILEY P A, IONITA M C, et al. Robust and accurate shape model matching using random forest regression-voting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1862-1874. [百度学术]
KABACOFF R I. R in action: data analysis and graphics with R[M]. Greenwich: Manning Publications, 2011: 1-474. [百度学术]
BURNHAM K P, ANDERSON D R. Model selection and inference: apractical information-theoretic approach[M]. 2nd ed. New York: Springer, 2002: 175-196. [百度学术]
孙霄,张云雷, 徐宾铎, 等. 海州湾及邻近海域短吻红舌鲲产卵场的生境适宜性[J]. 中国水产科学, 2020, 27(12): 1505-1514. [百度学术]
SUN X, ZHANG Y L, XU B D, et al. Habitat suitability of Cynoglossus joyneri spawning groundsin Haizhou Bay and adjacent waters[J]. Journal of Fishery Sciences of China, 2020, 27(12): 1505-1514. [百度学术]
花传祥, 高玉珍, 朱清澄, 等. 基于耳石微结构的西北太平洋秋刀鱼(Cololabis saira)年龄与生长研究[J]. 海洋学报, 2017, 39(10): 46-53. [百度学术]
HUA C X, GAO Y Z, ZHU Q C, et al. Age and growth of Pacific saury(Cololabis saira)in the northwest Pacific Ocean based on statolith microstructure[J]. Haiyang Xuebao, 2017, 39(10): 46-53. [百度学术]
陈琪. 基于耳石微结构分析东海带鱼(Trichiurus japonicus)早期生长与环境的关系[D]. 青岛: 中国海洋大学, 2020. [百度学术]
CHEN Q.The relationship between early growth of young-of-the-year largehead hairtail (Trichiurus japonicus) and environmental variables in the East China Sea based on otolith microstructure analysis[D]. Qingdao:Ocean University of China, 2020. [百度学术]
魏皓, 王玉衡, 万瑞景, 等. 黄海锋区环流与鳀鱼卵的聚集[J]. 中国海洋大学学报, 2007, 37(3): 512-516. [百度学术]
WEI H, WANG Y H, WAN R J, et al. Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the yellow sea[J]. Periodical of Ocean University of China, 2007, 37(3): 512-516. [百度学术]
LÜX G, QIAO F L, XIA C S, et al. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation[J]. Continental Shelf Research, 2010, 30(6): 620-632. [百度学术]
LIE H J. Summertime hydrographic features in the southeastern Hwanghae[J]. Progress in Oceanography, 1986, 17(3/4): 229-242. [百度学术]
张文超. 黄海鳀与蓝点马鲛产卵策略研究[D]. 青岛:中国海洋大学, 2022. [百度学术]
ZHANG W C. Spawning strategies of Japanese anchovy Engraulis japonicus and Japanese Spanish mackerel Scomberomorus niphonius in the Yellow Sea[D]. Qingdao:Ocean University of China, 2022. [百度学术]
殷名称. 鱼类生态学[M]. 北京: 中国农业出版社, 1995: 57-61. [百度学术]
YIN M C. Fish ecology[M]. Beijing: China Agriculture Press, 1995: 57-61. [百度学术]
COOMBS S H, PIPE R K, MITCHELL C E. The vertical distribution of eggs and larvae of Blue whiting (Micromesistius poutassou) and Mackerel (Scomber scombrus)in the eastern North Atlantic and North Sea[J]. Rapports et Procès-Verbaux des Réunions du Conseil Permanent International pour l'Exploration de la Mer, 1981. [百度学术]
GRAVE H. Food and feeding of mackerel larvae and early juveniles in the North Sea[J]. Rapp. P-v. Réun.Cons. Int. Explor. Mer, 1981, 178: 454-459. [百度学术]
GRØNKJÆR P, CLEMMESEN C, ST. JOHN M. Nutritional condition and vertical distribution of Baltic cod larvae[J]. Journal of Fish Biology, 1997, 51(sA): 352-369. [百度学术]
陶雨薇, 王远坤, 王栋, 等. 三峡水库坝下水温变化及其对鱼类产卵影响[J]. 水力发电学报, 2018, 37(10): 48-55. [百度学术]
TAO Y W, WANG Y K, WANG D, et al. Assessing water temperature variations and impacts on fish spawning downstream of Three Gorges Dam[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 48-55. [百度学术]
李雪渡. 海水温度与渔场之间的关系[J]. 海洋学报, 1982, 4(1): 103-113. [百度学术]
LI X D. Studies on the correlation between the temperature of sea water and fishing grounds[J]. Acta Oceanologica Sinica, 1982, 4(1): 103-113. [百度学术]
万瑞景, 黄大吉, 张经. 东海北部和黄海南部鳀鱼卵和仔稚幼鱼数量、分布及其与环境条件的关系[J]. 水产学报, 2002, 26(4): 321-330. [百度学术]
WAN R J, HUANG D J, ZHANG J. Abundance and distribution of eggs and larvae of Engraulis japonicus in the Northern part of East China Sea and the Southern part of Yellow Sea and its relationship with environmental conditions[J]. Journal of Fisheries of China, 2002, 26(4): 321-330. [百度学术]
PARRISH R H, NELSON C S, BAKUN A. Transport mechanisms and reproductive success of fishes in the California Current[J]. Biological Oceanography, 1981, 1(2): 175-203. [百度学术]
尹洁, 王晶, 张崇良, 等. 利用two-stage GAM研究海州湾及其邻近海域小黄鱼鱼卵的时空分布特征[J]. 中国水产科学, 2019, 26(6): 1164-1174. [百度学术]
YIN J, WANG J, ZHANG C L, et al. Spatial and temporal distribution characteristics of Larimichthys polyactis eggs in Haizhou Bay and adjacent regions based on two stage GAM[J]. Journal of Fishery Sciences of China, 2019, 26(6): 1164-1174. [百度学术]
徐敏. 盐碱度对3种鱼精子活力、受精率及孵化率的影响[D]. 上海: 上海海洋大学, 2015. [百度学术]
XU M. Effects of salinity and alkalinity on sperm motility, fertilization rate and hatching rate of 3 fish species[D]. Shanghai: Shanghai Ocean University, 2015. [百度学术]
王云峰, 朱鑫华. 盐度对鱼类生态生理学特征的影响[J]. 海洋科学集刊, 2002, 44(5): 151-158. [百度学术]
WANG Y F, ZHU X H. A review on impact of salinity on patterns of fish ecophysiology[J]. Studia Marina Sinica, 2002,44(5): 151-158. [百度学术]
TANG D L, KAWAMURA H,DIEN T V, et al. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea[J]. Marine Ecology Progress Series, 2004, 268: 31-41. [百度学术]
赵保仁. 黄海冷水团锋面与潮混合[J]. 海洋与湖沼, 1985, 16(6): 451-460. [百度学术]
ZHAO B R. The fronts of theHuanghai Sea cold water mass induced by tidal mixing[J]. Oceanologia et Limnologia Sinica, 1985, 16(6): 451-460. [百度学术]
ITOH S, YASUDA I, NISHIKAWAH, et al. Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments[J]. Fisheries Oceanography, 2009, 18(2): 118-133. [百度学术]
BOLDT J L, THOMPSON M, ROOPER C N, et al. Bottom-up and top-down control of small pelagic forage fish: Factors affecting age-0 herring in the Strait of Georgia, British Columbia[J]. Marine Ecology Progress Series, 2019, 617-618: 53-66. [百度学术]
DO SOUTO M, SPINELLI M L, BROWN D R, et al. Benefits of frontal waters for the growth of Engraulis anchoita larvae: The influence of food availability[J]. Fisheries Research, 2018, 204: 181-188. [百度学术]
MARTIN T G, WINTLE B A, RHODES J R, et al. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations[J]. Ecology Letters, 2005, 8(11): 1235-1246. [百度学术]
MACKENZIE D I, NICHOLS J D, LACHMAN G B, et al. Estimating site occupancy rates when detection probabilities are less than one[J]. Ecology, 2002, 83(8): 2248-2255. [百度学术]
HWANG S D, SONG M H, LEE T W, et al. Growth of larval Pacific anchovy Engraulis japonicus in the Yellow Sea as indicated by otolith microstructure analysis[J]. Journal of Fish Biology, 2006, 69(6): 1756-1769. [百度学术]
HØIE H, FOLKVORD A, JOHANNESSEN A. Maternal, paternal and temperature effects on otolith size of young herring (Clupea harengus L.)larvae[J]. Journal of Experimental Marine Biology and Ecology, 1999, 234(2): 167-184. [百度学术]