Design and test of marine ranching combination-type unmanned monitoring vessel
CSTR:
Author:
Clc Number:

S959

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the in-depth development of marine ranching construction, dynamic monitoring and assessment of marine ecological environment and fishery resources have become particularly important, and mobile autonomous monitoring is one of the feasible solutions. Aiming at the problems of low efficiency, poor flexibility, high cost and difficult transportation and delivery of existing monitoring methods, a combined unmanned monitoring ship equipped with multiple types of monitoring equipment was proposed. The hull structure design and monitoring instrument installation mechanism design were carried out, and the counterweight mechanism design was carried out considering the hull draft load and stability. Based on the computational fluid dynamics method, the hull resistance performance was simulated and calculated, and the underwater thruster selection was completed, and the static strength finite element analysis was carried out on the unmanned ship connecting bridge structure in high waves, and the strength of the hull structure could resist the 4th level wave. The test results show that the unmanned monitoring vessel has stable operation without interference, the design draft is 0.25 m, the speed is 2.5 m/s, and it can be competent for marine ranching work sea conditions. The monitoring equipment works stably after being installed, and can monitor underwater fishery resources, explore underwater terrain, monitor water pH, temperature and dissolved oxygen in real time. This study provides technical support for ocean dynamic, real-time monitoring and digitalization, and provides a low-cost and reliable implementation scheme for the design and research of marine ranching combined unmanned monitoring vessels.

    Reference
    [1] YANG H S. Construction of marine ranching in China: reviews and prospects[J]. Journal of Fisheries of China, 2016, 40(7): 1133-1140. 杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.
    [2] LIN C G, YANG H S, CHEN Y, et al. Construction and development of modern marine ranching:Academic review of the 230th Shuangqing forum[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 143-152. 林承刚, 杨红生, 陈鹰, 等. 现代化海洋牧场建设与发展:第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143-152.
    [3] LI Z Y, LIN Q, LI J, et al. Present situation and future development of marine ranching in construction China[J]. Journal of Fisheries of China, 2019, 43(9): 1870-1880. 李忠义, 林群, 李娇, 等. 中国海洋牧场研究现状与发展[J]. 水产学报, 2019, 43(9): 1870-1880.
    [4] LI J, CHEN P K, CHEN L L, et al. Design and experiment of water quality monitoring and sampling integrated unmanned boat[J]. Journal of Shanghai Ocean University, 2023, 32(2): 405-416. 李俊, 陈普坤, 陈雷雷, 等. 水质监测与采样一体化无人船设计与试验[J]. 上海海洋大学学报, 2023, 32(2): 405-416.
    [5] ZHANGM F, LID L, WANGL Z, et al. Design and development of water quality monitoring system based on wireless sensor network in aquaculture[C]//Proceedings of the 4th IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture IV. Nanchang: Springer, 2010: 629-641.
    [6] CHENGJ H, SUNW T, LING Y. Automated monitoring system for the fish farm aquaculture environment[C]//2015 IEEE International Conference on Systems, Man, and Cybernetics. Hong Kong, China: IEEE, 2015: 1161-1166.
    [7] RAJUK R S R, VARMAG H K. Knowledge based real time monitoring system for aquaculture using IoT[C]//2017 IEEE 7th International Advance Computing Conference. Hyderabad: IEEE, 2017: 318-321.
    [8] RIVKIN B S. Unmanned ships: navigation and more[J]. Gyroscopy and Navigation, 2021, 12(1): 96-108.
    [9] SHIPUNOV I, NYRKOV A, KATORIN Y, et al. On the issue of building sea convoys from unmanned ships[J]. E3S Web of Conferences, 2021, 244: 08013.
    [10] ZHAO T Q, HAN C, XU Y L, et al. Application of unmanned surface vehicle in urban river water quality monitoring[J]. China Water & Wastewater, 2021, 37(7): 71-77. 赵同强, 韩超, 徐玉良, 等. 无人船技术应用于城市内河水质监测[J]. 中国给水排水, 2021, 37(7): 71-77.
    [11] JIANGX Y. Design and implementation of a water quality monitoring unmanned ship system[D]. Nanjing: Nanjing University of Information Science & Technology, 2018: 61-65. 蒋星宇. 一种水质监测无人船系统的设计与实现[D]. 南京: 南京信息工程大学, 2018: 61-65.
    [12] WANG Y L, LI S F, JIANG Y Z, et al. Marine ranching and fishery stock enhancement in the Xiangshan Bay[J]. Journal of Fisheries of China, 2019, 43(9): 1972-1980. 王云龙, 李圣法, 姜亚洲, 等. 象山港海洋牧场建设与生物资源的增殖养护技术[J]. 水产学报, 2019, 43(9): 1972-1980.
    [13] LI N, ZHANG H K, LIU Y. Technological probe of model design and shipbuilding for submarine[J]. China Shiprepair, 2006, 19(s1): 19-22. 李宁, 张海宽, 刘宇. 潜艇模块化设计与建造技术探讨 [J]. 中国修船, 2006, 19(s1): 19-22.
    [14] JIN B X. Design of a modular underwater robot[J]. Machinery & Electronics, 2014(4): 75-77. 金碧霞. 一种模块化水下机器人的设计[J]. 机械与电子, 2014(4): 75-77.
    [15] WANG J. Research status and development trend of high performance ships[J]. Marine Equipment/Materials & Marketing, 2020(8): 7-9. 王骏. 高性能船舶研究现状及发展趋势[J]. 船舶物资与市场, 2020(8): 7-9.
    [16] WANG C C, JIAO C, SHEN Z Y, et al. Effect of wastewater discharge of aquaculture and its prevention & treatment suggestion in China[J]. Pearl River, 2020, 41(1): 89-98. 王成成, 焦聪, 沈珍瑶, 等. 中国水产养殖尾水排放的影响与防治建议[J]. 人民珠江, 2020, 41(1): 89-98.
    [17] LI J, ZHU Y F, CHEN L L, et al. Analysis of driving resistance and optimization of boat type for crab pond catamaran bait boat [J]. Journal of Shanghai Ocean University, 2022, 31(1): 269-277. 李俊, 朱逸凡, 陈雷雷, 等. 蟹塘双体投饵船行驶阻力分析及船型优化[J]. 上海海洋大学学报, 2022, 31(1): 269-277.
    [18] CHEN L L, REN W C, LI J, et al. Design and performance analysis of spiral drive device of crab pond bait boat[J]. Fishery Modernization, 2022, 49(3): 27-35. 陈雷雷, 任万川, 李俊, 等. 蟹塘投饲船螺旋驱动装置设计与水动力性能分析[J]. 渔业现代化, 2022, 49(3): 27-35.
    [19] YANG P, HUANG L H. Direct calculation for a catamaran’s structure[J]. Ship & Ocean Engineering, 2006, 35(5): 4-7. 杨平, 黄乐华. 双体船结构的直接计算分析[J]. 船海工程, 2006, 35(5): 4-7.
    [20] CHENGX R. Calculation of the structural strength of the catamaran[D]. Dalian: Dalian University of Technology, 2012: 44-46. 程相如. 双体船结构强度计算[D]. 大连: 大连理工大学, 2012: 44-46.
    [21] China Classification Society. Surface unmanned boat inspection guide[S]. Beijing: People's Communications Press, 2018: 1, 28-44. 中国船级社. 无人水面艇检验指南[S]. 北京: 人民交通出版社, 2018: 1, 28-44.
    [22] China Classification Society. Classification specifications for small seagoing vessels[S]. Beijing: People's Communications Press, 2021: 9, 14-16. 中国船级社. 小型海船入级规范[S]. 北京: 人民交通出版社, 2021: 9, 14-16.
    [23] China Classification Society. Offshore high-speed ship classification and construction specifications[S]. Beijing: People's Communications Press, 2022: 7, 46-51. 中国船级社. 海上高速船入级与建造规范[S]. 北京: 人民交通出版社, 2022: 7, 46-51.
    [24] YUE X H, MAO B F, ZHAO J L, et al. Finite element analysis of structural strength for SWATH[J]. Guangdong Shipbuilding, 2020, 39(2): 29-32. 岳兴华, 毛斌峰, 赵经玲, 等. 小水线面双体船结构有限元分析[J]. 广东造船, 2020, 39(2): 29-32.
    [25] ZHANG B, ZHAO C, LI Y S, et al. Analysis of wave load and structural strength of catamaran barge[J]. China Water Transport, 2023, 23(1): 1-3. 张波, 赵陈, 李永顺, 等. 双体趸船波浪载荷与结构强度分析[J]. 中国水运, 2023, 23(1): 1-3.
    [26] QIAN H, LI Z P, CHEN C, et al. The research of brush motors used in vacuum[J]. Carbon, 2020(2): 20-23. 钱华, 李志鹏, 陈辰, 等. 有刷直流电机真空应用研究[J]. 炭素, 2020(2): 20-23.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李俊,李怀进,汪振华,林军,张锦飞.海洋牧场组合式无人监测船设计与试验[J].上海海洋大学学报,2023,32(5):1048-1058.
LI Jun, LI Huaijin, WANG Zhenhua, LIN Jun, ZHANG Jinfei. Design and test of marine ranching combination-type unmanned monitoring vessel[J]. Journal of Shanghai Ocean University,2023,32(5):1048-1058.

Copy
Share
Article Metrics
  • Abstract:350
  • PDF: 596
  • HTML: 354
  • Cited by: 0
History
  • Received:June 15,2023
  • Revised:August 11,2023
  • Adopted:August 26,2023
  • Online: September 20,2023
  • Published: September 20,2023
Article QR Code