Dynamic weighing algorithm of bait based on improved strong tracking unscented Kalman filtering
Author:
Clc Number:

TH715;TN713;S969.31

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [1]
  • | | |
  • Comments
    Reference
    [1] WU Y H, DUAN Y H, WEI Y G, et al. Application of intelligent and unmanned equipment in aquaculture: A review[J]. Computers and Electronics in Agriculture, 2022, 199: 107201.
    [2] HU Q S, CAO J R, ZHENG B, et al. Design and reliability test of paddle wheel drived shrimp pond autonomous navigation feeding boat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 121-128. 胡庆松, 曹佳瑞, 郑波, 等. 明轮驱动虾塘自主导航投饵船设计与可靠性试验[J]. 农业机械学报, 2019, 50(11): 121-128.
    [3] CHENGW P. Intelligent mobile shrimp pond feeding equipment development and testing[D]. Shanghai: Shanghai Ocean University, 2017. 程文平. 智能型虾塘移动式投饵装置研发与试验[D]. 上海: 上海海洋大学, 2017.
    [4] ZHANG L Z, LIU S H, CHEN L L, et al. Design of precision feeding machine on board for shrimp pond culture[J]. Machine Design and Research, 2021, 37(5): 203-206, 210. 张丽珍, 刘单寒, 陈雷雷, 等. 虾塘养殖船载精准投饵机设计[J]. 机械设计与研究, 2021, 37(5): 203-206, 210.
    [5] SUN Y P, CHEN Z X, ZHAO D A, et al. Design and experiment of precise feeding system for pond crab culture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 291-301. 孙月平, 陈祖旭, 赵德安, 等. 池塘河蟹养殖精准投饵系统设计与试验[J]. 农业机械学报, 2022, 53(5): 291-301.
    [6] CAI Y S, ZHANG G, HAN X L, et al. De-noising and pre-judgment of accurate dynamic weighing signal in automatic feeding based on HHT[J]. Journal of Agricultural University of Hebei, 2019, 42(1): 106-113. 蔡永胜, 张刚, 韩祥兰, 等. 基于HHT的精确投饵动态称重信号的降噪和预判研究[J]. 河北农业大学学报, 2019, 42(1): 106-113.
    [7] LIU Y L, LI X L. Application of HHT in dynamic weigh-in-motion sensor nonlinear signal processing[J]. Transducer and Microsystem Technologies, 2015, 34(7): 158-160. 刘玉龙, 李晓林. HHT在动态称重传感器处理非线性信号中的应用[J]. 传感器与微系统, 2015, 34(7): 158-160.
    [8] ZHAO H, TAN C J, ZHANG L W, et al. Improved identification of vehicular axles in BWIM system based on wavelet transform[J]. Journal of Hunan University (Natural Science Edition), 2016, 43(7): 111-119. 赵华, 谭承君, 张龙威, 等. 基于小波变换的桥梁动态称重系统车轴高精度识别研究[J]. 湖南大学学报 (自然科学版), 2016, 43(7): 111-119.
    [9] REHMAN T, TAHIR W, LIM W. Kalman filtering for precise mass flow estimation on a conveyor belt weigh system[M]//ZHANG D, WEI B. Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing. Cham: Springer, 2017.
    [10] ONAT A, KAYAALP B T. A joint unscented Kalman filter-based dynamic weigh in motion system for railway vehicles with traction[J]. IEEE Sensors Journal, 2021, 21(14): 15709-15718.
    [11] LIANG T T, WANG M, ZHOU Z H. State estimation for sampled-data descriptor nonlinear system: A strong tracking unscented Kalman filter approach[J]. Mathematical Problems in Engineering, 2017(7): 1-9.
    [12] BAO S D, ZHANG A, BI W H. Speedy strong tracking unscented Kalman filter and its application in maneuvering target tracking[J]. Systems Engineering and Electronics, 2018, 40(6): 1189-1196. 鲍水达, 张安, 毕文豪. 快速强跟踪UKF算法及其在机动目标跟踪中的应用[J]. 系统工程与电子技术, 2018, 40(6): 1189-1196.
    [13] WANG Y, LIU H, HOU X Z, et al. Transient voltage disturbance detection based on modified strong tracking UKF[J]. Power System Protection and Control, 2017, 45(19): 109-116. 王毅, 刘恒, 侯兴哲, 等. 基于改进强跟踪UKF的电压暂态扰动检测[J]. 电力系统保护与控制, 2017, 45(19): 109-116.
    [14] NIU S S, WANG C X, LIANG Z R, et al. An algorithm for tracking synchronous phasor of power signals based on improved strong tracking unscented Kalman filter[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2255-2264. 牛胜锁, 王春鑫, 梁志瑞, 等. 基于改进强跟踪无迹卡尔曼滤波的电力信号同步相量跟踪算法[J]. 电工技术学报, 2021, 36(11): 2255-2264.
    [15] CARAPIA G Q, MARKOVSKY I. Input parameters estimation from time-varying measurements[J]. Measurement, 2020, 153: 107418.
    [16] PANG M Y. Realtime dynamic simulation of 2-D water waves based on discrete model[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1358-1363. 庞明勇. 基于离散模型的二维水波实时动态模拟方法[J]. 水利学报, 2007, 38(11): 1358-1363
    [17] YANG H X, ZHANG J Y, ZHANG H. States of charge estimation of lithium-ion battery based on improved Sage-Husa adaptive unscented Kalman filters[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(1): 30-35. 杨海学, 张继业, 张晗. 基于改进Sage-Husa的自适应无迹卡尔曼滤波的锂离子电池SOC估计[J]. 电工电能新技术, 2016, 35(1): 30-35.
    [18] ZHANG S Z, GUO X, ZHANG X W. An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery[J]. Journal of energy storage, 2020, 32: 101980.
    [19] ZHANG M, XU S L, LU D L, et al. Dynamic harmonic state estimation of a power system based on adaptive SRUKF[J]. Power System Protection and Control, 2023, 51(2): 102-111. 张明, 徐诗露, 陆东亮, 等. 基于自适应SRUKF算法的电力系统动态谐波状态估计[J]. 电力系统保护与控制, 2023, 51(2): 102-111.
    [20] FAN Y S, QIAO S H, WANG G F, et al. A modified adaptive Kalman filtering method for maneuvering target tracking of unmanned surface vehicles[J]. Ocean Engineering, 2022, 266: 112890.
    [21] XU C, ZHANG E, JIANG K, et al. Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery[J]. Applied Energy, 2022, 327: 120091.
    [22] XIAO L, WANG S J, CHANG L, et al. Attitude determination for satellite using adaptive unscented Kalman filter[J]. Optics and Precision Engineering, 2021, 29(3): 637-645. 肖磊, 王绍举, 常琳, 等. 采用自适应无迹卡尔曼滤波的卫星姿态确定[J]. 光学精密工程, 2021, 29(3): 637-645.
    [23] TONG Y Z, ZHENG Z S, FAN W L, et al. An improved unscented Kalman filter for nonlinear systems with one-step randomly delayed measurement and unknown latency probability[J]. Digital Signal Processing, 2022, 121: 103324.
    [24] CUI Z H, KANG L, LI L W, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy, 2022, 259: 124933.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Recommendations
Suggestions and countermeasures for the development of science and technology in china's distant-water fisheries 4.0
CHEN Xinjun et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Current status and prospects of research on the distribution of light fields for fish collection in light induced fisheries
WANG Weijie et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Rope throwing speed control of large drum intelligent fishing machine and its effect on albacore tuna fishing results
LIU Yuqing et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Design and experimentation of a mobile autonomous baiting device for shrimp and crab aquaculture
CUI Xiufang et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Feeding state classification of grass carp based on optical flow and improved rnn
LIU Shi-Jing et al., ACTA HYDROBIOLOGICA SINICA, 2022
Research on weighing bait at sea based on pso-bp neural network
LIN Huajian1 et al., FISHERY MODERNIZATION, 2025
An improved relative navigation algorithm of unscented particle filter based on genetic algorithm
QIU Qihan et al., FIRE CONTROL & COMMAND CONTROL, 2025
Quaternary ammonium salts: insights into synthesis and new directions in antibacterial applications
Zhou, Zhenyang et al., BIOCONJUGATE CHEMISTRY, 2023
Enhanced contour tracking: a time-varying internal model principle-based approach
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2025
Coordinated tracking control of the integrated wheel-end system based on generalized instantaneous steering center constraint
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025
Powered by
Get Citation

张丽珍,李旗明,吴迪,保冶君,何睿杰,李志坚.基于改进强跟踪无迹卡尔曼滤波的饵料动态称重算法[J].上海海洋大学学报,2023,32(5):967-977.
ZHANG Lizhen, LI Qiming, WU Di, BAO Yejun, HE Ruijie, LI Zhijian. Dynamic weighing algorithm of bait based on improved strong tracking unscented Kalman filtering[J]. Journal of Shanghai Ocean University,2023,32(5):967-977.

Copy
Share
Article Metrics
  • Abstract:384
  • PDF: 795
  • HTML: 111
  • Cited by: 0
History
  • Received:June 15,2023
  • Revised:July 21,2023
  • Adopted:August 04,2023
  • Online: September 20,2023
  • Published: September 20,2023
Article QR Code