Research progress in refrigeration technology for cryogenic storage of biological samples
CSTR:
Author:
Clc Number:

TB 61;TB 658

  • Article
  • | |
  • Metrics
  • |
  • Reference [52]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Low-temperature storage of biological samples has become an essential aspect of various fields, including biomedical research, clinical diagnosis, and pharmaceutical development. It involves the preservation of biological samples in a controlled environment to maintain their integrity, quality and functionality. The success of these applications relies heavily on the use of appropriate refrigeration technologies that can provide the necessary temperature and humidity conditions for long-term storage. Therefore, this article analyzes the low-temperature characteristics of biological samples, and combines domestic and foreign literature to review the current application status of refrigeration technology in biological sample storage from four temperature zones: cold storage, freezing, low-temperature, and ultra-low temperature.The advantages and disadvantages of various refrigeration technologies are compared, and the optimal refrigeration technology in the same temperature zone is summarized. Finally, the bottleneck problems of equipment that restrict low-temperature storage of biological samples are discussed and the future development direction of refrigeration technology for low-temperature storage of biological samples is proposed. Aiming to provide a certain reference for the development of refrigeration technology in the biomedical field.

    Reference
    [1] CHANIHOON G Q, AFRIDI H I, UNAR A, et al. Selenium and mercury concentrations in biological samples from patients with COVID-19[J]. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 2022, 73: 127038.
    [2] WANG M, LI Q, LYU Z B, et al. Common preservation methods of biological samples and their effects[J]. Chinese Journal of Pathology, 2016, 45(11): 807-810. 王敏, 李倩, 吕志宝, 等. 生物样本的常用保存方式及效果[J]. 中华病理学杂志, 2016, 45(11): 807-810.
    [3] CHEN Z Q, LIU B L, SONG X Y, et al. Simulation on the cooling stage of quick freezing device for biological samples[J]. Journal of Refrigeration, 2019, 40(3): 159-166. 陈州旗, 刘宝林, 宋晓燕, 等. 生物样本速冻装置冷台模拟研究[J]. 制冷学报, 2019, 40(3): 159-166.
    [4] SAGANUWAN S A. Application of modified Michaelis - Menten equations for determination of enzyme inducing and inhibiting drugs[J]. Bmc Pharmacology & Toxicology, 2021, 22(1): 57.
    [5] ZHOU T, YAO Y, ZHANG Q, et al. Cryogenic activity and stability of benzaldehyde lyase enzyme in lipidic mesophases-nanoconfined water[J]. Chemical Communications, 2021, 57(46): 5650-5653.
    [6] FANG Z G. Lifetime prediction method of polypropylene [J]. Synthetic Materials Aging and Application, 2018, 47(6): 54-56. 方志刚. 聚丙烯使用寿命预测方法[J]. 合成材料老化与应用, 2018, 47(6): 54-56.
    [7] EARNEST T, FAUMAN E, CRAIK C S, et al. 1.59 A structure of trypsin at 120 K: comparison of low temperature and room temperature structures[J]. Proteins Structure Function and Bioinformatics, 1991, 10(3): 171-87.
    [8] NAKASAKO M. Large-scale networks of hydration water molecules around bovine beta-trypsin revealed by cryogenic X-ray crystal structure analysis[J]. Journal of Molecular Biology, 1999, 289(3): 547-564.
    [9] MROCZKA N E, MERCER K R, BERNHARD W A. The effects of lattice water on free radical yields in x-irradiated crystalline pyrimidines and purines: A low-temperature electron paramagnetic resonance investigation[J]. Radiation Research, 1997, 147(5): 560-568.
    [10] ZHOU L, LEI Q, GUO J, et al. Long-term whole blood DNA preservation by cost-efficient cryosilicification[J]. Nature Communications, 2022, 13(1): 6265.
    [11] RIBEIRO OLIVIERI E H, FRANCO L D A, PEREIRA R G, et al. Biobanking practice: RNA storage at low concentration affects integrity[J]. Biopreservation and Biobanking, 2014, 12(1): 46-52.
    [12] LIANG W, WANG M X, LIU B L. The effect of cryopreservation on biospecimens and biomacromolecules[J]. Chinese Journal of Biomedical Engineering, 2017, 36(5): 615-621. 梁玮,王美霞,刘宝林.低温保存对生物样本及其生物大分子的影响[J].中国生物医学工程学报,2017, 36(5): 615-621.
    [13] GUNAWARDENA D, JAYAWEERA S, MADHUBHASHINI G, et al. Reliability of parameters of complete blood count with different storage conditions[J]. Journal of Clinical Laboratory Analysis, 2017, 31(2): 6.
    [14] SOMOVA L M, TIMCHENKO N F, LYAPUN I N, et al. Ultrastructural changes of bacteria in static cultures of Yersinia pseudotuberculosis under long storage under conditions of low temperature[J]. Bulletin of Experimental Biology and Medicine, 2020, 170(2): 223-225.
    [15] LUO Q H, TANG G F, LI T. Review and application of thermoelectric air conditioning[J]. Refrigeration and Air-Conditioning, 2005(6): 5-9. 罗清海, 汤广发, 李涛. 半导体制冷空调的应用与发展前景[J]. 制冷与空调, 2005(6): 5-9.
    [16] QIU L L, WANG Y, ZHU J R, et al. Experimental research on the performance of storage box with semiconductor refrigeration applied in cold chain[J]. Journal of Refrigeration, 2020, 41(1): 131-140. 邱兰兰, 王瑜, 朱洁茹, 等. 应用半导体制冷的冷藏链用储藏箱性能实验研究[J]. 制冷学报, 2020, 41(1): 131-140.
    [17] HASSAAN-YOUNISM, HAROON-UR-R. Energy efficient, peltier based portable cabinet cooling system for vaccine cold chain[C]// Proceedings of the 4th International Conference on Power Generation Systems and Renewable Energy Technologies, Islamabad: Institute of Electrical and Electronics Engineers, 2018: 30-33.
    [18] WANG Y, QIU L, LIU J, et al. Performance of a fresh-food storage box based on semiconductor refrigeration[J]. Sustainable Cities and Society, 2019, 49(4):101599.
    [19] LIU J, XU C G, XIANG H Y, et al. Applications in medical reagent test equipment of semiconductor refrigeration[J]. Applied Mechanics and Materials, 2013, 325-326: 703-707.
    [20] HAIERB. 2022 Refrigerated transfer box HZY-8ZA[EB/OL]. (2022-8-30) [2022-10-17]. haierbiomedical.com
    [21] LIU L, ZHANG X, XU X, et al. Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics[J]. Renew Energy, 2021, 179: 2348-2358
    [22] ZHAO Y, ZHANG X, XU X, et al. Development of composite phase change cold storage material and its application in vaccine cold storage equipment[J]. Journal of Energy Storage, 2020, 30.
    [23] PANX Y. Temperature field analysis in medicine incubator by thermal insulation material and ctesms[D]. Hangzhou: Zhejiang Sci-Tech University, 2018. 潘欣艺. 保温材料与蓄冷剂对医药保温箱内温度分布影响研究[D]. 杭州:浙江理工大学, 2018.
    [24] ILLERT W E, BUTSCH H, NUBER D, et al. Long-term storage multicenter study of fresh frozen plasma at -40℃. A multicenter study on the stability of labile coagulation factors over a period of 3 years[J]. Transfusion Medicine & Hemotherapy, 2001, 28(4): 189-194.
    [25] GUO Z Z. Management measures for transport and storage of animal vaccines[J]. Livestock and Poultry Industry,2018,29(5):51. 郭志珍.动物疫苗运输与贮存管理措施[J].畜禽业,2018,29(5):51.
    [26] ILLERT W E, BUTSCH H, NUBER D, et al. Long-term storage multicenter study of fresh frozen plasma at -40 degrees C. A multicenter study on the stability of labile coagulation factors over a period of 3 years[J]. Infusion Therapy and Transfusion Medicine-Infusionstherapie Und Transfusionsmedizin, 2001, 28(4): 189-194.
    [27] GE C W, JIANG S M, YU Z Q. Research on NH3/CO2 refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2014, 34(3): 22-28. 葛长伟, 姜韶明, 于志强. NH3/CO2制冷系统的研究[J]. 制冷技术, 2014, 34(3): 22-28.
    [28] C-H SON. Performance comparison of cascade refrigerator and two-stage compression refrigerator[J]. Journal of the Korea Academia-Industrial cooperation Society, 2014, 15(2): 625-631.
    [29] LI W L, HUA X L. Experimental study on refrigerating cycle of mixed working medium[J]. Fluid Machinery, 1987(4): 53-55,65. 李文林, 华小龙. 混合工质制冷循环的试验研究[J]. 流体工程, 1987(4): 53-55,65.
    [30] YANG Y A, YANG Z, LIU B. Study of water-cooled auto-cascade refrigeration cycle with a low temperature of -60℃[J]. Journal of Refrigeration, 2015, 36(2): 52-58. 杨永安, 杨昭, 刘斌. -60℃水冷自复叠制冷系统研究[J]. 制冷学报, 2015, 36(2): 52-58.
    [31] WANGC. Study of several problems affecting the repeat positioning accuracy and reliability of robotic cold storage[D]. Qingdao: Qingdao University, 2018. 王超. 影响机械手冷库重复定位精度和可靠性若干问题的研究[D]. 青岛:青岛大学, 2018.
    [32] WANG S X, WANG J F, XIE J, et al. Remote monitoring system for cascade refrigeration based on LabVIEW[J]. Foreign Electronic Measurement Technology, 2018, 37(3): 108-112. 王树信, 王金锋, 谢晶, 等. 基于LabVIEW的复叠式制冷远程监测系统[J]. 国外电子测量技术, 2018, 37(3): 108-112.
    [33] SUN J J, SHEN J, KANG F Y. Experimental study on cascade system in blood cold storage[J]. Cryogenics and Superconductivity, 2019, 47(6): 106-110. 孙建军, 申江, 康方圆. 应用于血液冷库的双级复叠系统的实验研究[J]. 低温与超导, 2019, 47(6): 106-110.
    [34] DI MARINO L, MAFFETTENE A, CIPRIANO P, et al. Assay of erythrocyte membrane fatty acids.Effects of storage time at low temperature[J]. International Journal of Clinical & Laboratory Research, 2000, 30(4): 197-202.
    [35] LOU J J, MIRSADRAEI L, SANCHEZ D E, et al. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories[J]. Clinical Biochemistry, 2014, 47(4/5): 267-273.
    [36] LIU Y F, CHEN S, ZHOU G L. Experimental research of low temperature refrigerator with Stirling-type pulse tube cooler[J]. Fluid Machinery, 2018, 46(1): 69-72,88. 刘业凤, 陈申, 周国梁. 斯特林型低温冰箱的试验研究[J]. 流体机械, 2018, 46(1): 69-72,88.
    [37] MASAYUN T, XU X S. Metal materials for cryogenic storage tanks[J]. Petrochemical Equipment Technology, 1984(4): 58-65. 高野真延, 徐先盛. 低温储罐用金属材料[J]. 炼油设备设计, 1984(4): 58-65.
    [38] KIM H-B, PARK J, WOO K J, et al. Development of stirling cooler for ultra low temperature freezer[J]. Journal of Power System Engineering, 2020, 24(6): 67-74.
    [39] BERCHOWITZ D M, KWON Y. Environmental profiles of stirling-cooled and cascade-cooled ultra-low temperature freezers[J]. Sustainability, 2012, 4(11): 2838-2851.
    [40] ZHUANG H, XIE R J, LIU B X, et al. Development of a -80℃ Stirling-cooled low temperature refrigerator[J]. Cryogenics, 2017(5): 65-70. 庄禾, 谢荣建, 刘博轩, 等. -80℃斯特林低温冰箱研制[J]. 低温工程, 2017(5): 65-70.
    [41] LI H F, CHEN Z Q, WANG J X, et al. Research on design of ultra-low temperature cold chain box for vaccine storage based on Stirling ultracold[J]. Chinese Journal of Refrigeration Technology, 2021, 41(5): 100-104,110. 李虎飞, 陈州旗, 王建信, 等. 基于斯特林制冷超低温疫苗冷链箱的设计研究[J]. 制冷技术, 2021, 41(5): 100-104,110.
    [42] GAO M H, ZHANG J S, LAN P. Viability of the rabbits' corneal limbal epithelial cells cryopreserved at -196℃[J]. Chinese Journal of Practical Ophthalmology, 2006(6): 658-662. 高明宏, 张劲松, 蓝平. 超低温(-196℃)保存角膜缘上皮细胞的生物活性研究[J]. 中国实用眼科杂志, 2006(6): 658-662.
    [43] SU X. Preservation of the callus tissues under the condition of superlower temperature (-196℃) in fritillaria thunbergii miq[J]. Chinese Journal of Modern Applied Pharmacy, 1990(4): 18-19. 苏新. 浙贝母愈伤组织的超低温(-196℃)保存[J]. 现代应用药学, 1990(4): 18-19.
    [44] KELLY R, ALBERT M, DE LADURANTAYE M, et al. RNA and DNA integrity remain stable in frozen tissue after long-term storage at cryogenic temperatures: a report from the Ontario Tumour Bank[J]. Biopreservation and Biobanking, 2019, 17(4): 282-287.
    [45] HUANG Y Z, SHEN J L, YIN W J, et al.Viability of mesenchymal stem cells after long-term cryopreservation of bone marrow cells in liquid nitrogen[J]. Chinese Journal of Blood Transfusion, 2010, 23(4): 272-276. 黄友章, 沈建良, 尹文杰, 等. 骨髓细胞液氮长期冻存后间充质干细胞活力研究[J]. 中国输血杂志, 2010, 23(4): 272-276.
    [46] YAO Y, WANG F. Effects of different preservation methods on biomacromolecules and microbial flora[J]. Journal of Central South University(Medical Science), 2020, 45(8): 909-915. 姚瑶, 王芬. 不同保存方式对生物大分子物质及微生物菌群的影响[J]. 中南大学学报(医学版), 2020, 45(8): 909-915.
    [47] ROWLEY S D, BYRNE D V. Low-temperature storage of bone marrow in nitrogen vapor-phase refrigerators: decreased temperature gradients with an aluminum racking system[J]. Transfusion, 1992, 32(8): 750-754.
    [48] ZHANG X Y, ZHU C C. Construction and information management of automated bio-bank[J]. Journal of Navy Medicine, 2023,44(4):430-432. 张雪莹,朱承超.自动化生物样本库建设与信息化管理[J].海军医学杂志,2023,44(4):430-432.
    [49] GONG M Q, GUO H, LIU J Y, et al. Research progress on mixed-gases Joule-Thomson refrigeration technology and its applications to freezing and cold storage at ultra-low temperature ranges[J]. Refrigeration and Air-conditioning, 2015, 15(12): 62-66,51. 公茂琼, 郭浩, 刘加永, 等. 混合工质节流制冷技术及其在低温速冻冷藏方面应用研究进展[J]. 制冷与空调, 2015, 15(12): 62-66,51.
    [50] GONG M Q, WU J, CHENG Q, et al. Development of a -186℃ cryogenic preservation chamber based on a dual mixed-gases Joule-Thomson refrigeration cycle[J]. Applied Thermal Engineering, 2012, 36: 188-192.
    [51] KO J, PARK J, KIM H-B, et al. Performance test of stirling cooler for ultra-low temperature application[J]. Journal of Power System Engineering, 2021, 25(6): 71-77.
    [52] LIUZ J. Development and application of stirling deep cryogenic refrigerator technology[Z]. Qingdao: Qingdao Haier Special Electric Appliance Co., Ltd, 2017-10-20. 刘占杰. 斯特林深低温冰箱技术开发及应用[Z]. 青岛: 青岛海尔特种电器有限公司, 2017-10-20.
    Cited by
Get Citation

张安阔,修吉军,吴一骁,谢晶.生物样品低温存储制冷技术研究进展[J].上海海洋大学学报,2023,32(6):1109-1122.
ZHANG Ankuo, XIU Jijun, WU Yixiao, XIE Jing. Research progress in refrigeration technology for cryogenic storage of biological samples[J]. Journal of Shanghai Ocean University,2023,32(6):1109-1122.

Copy
Share
Article Metrics
  • Abstract:712
  • PDF: 856
  • HTML: 246
  • Cited by: 0
History
  • Received:May 11,2023
  • Revised:June 28,2023
  • Adopted:September 05,2023
  • Online: November 29,2023
  • Published: November 20,2023
Article QR Code