Optimization of culture conditions for a newly isolated microalga Haematococcus pluvialis
CSTR:
Author:
Clc Number:

S963.21;Q94-33

  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The suitable culture conditions for the growth of a newly isolated microalga Haematococcus pluvialis were investigated. The light intensity, culture temperature and inoculation density for optimal growth of the microalga were obtained as 105 μmol/(m2·s), 21 ℃and 7.5×104 cells/mL respectively based on cell density as the indicator via single factor test. The growth performance (cell density) of the microalga could be predicted with the quadratic polynomial equation established by response surface method (RSM) coupled with Box -Behnken design. Light intensity, culture temperature and inoculation density as well as their binomial had significant effects on the cell density of H. pluvialis in cultivation. The weight of influence from the factors was as follows: inoculation density > light intensity > culture temperature. The combined culture conditions for optimal growth of H. pluvialis predicted by RSM were light intensity 120 μmol/(m2·s), temperature 20 ℃ and inoculation density 9.25×104 cells/mL.Confirmatory test showed a cell density of 45.08 ×104 cells/mL in culture was obtained under the predicted optimal combined culture conditions, which was 6.9% higher than the highest cell density of the culture under optimal culture conditions based on single factor test.

    Reference
    [1] LORENZ R T, CYSEWSKI G R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin[J]. Trends in Biotechnology, 2000, 18(4):160-167.
    [2] CHEW B P, PARK J S. Carotenoid action on the immune response[J]. Journal of Nutrition, 2004, 134(1):257-261.
    [3] GUERIN M, HUNTLEY M E, OLAIZOLA M. Haematococcus astaxanthin:applications for human health and nutrition[J]. Trends in Biotechnology, 2003, 21(5):210-216.
    [4] NAGENDRAPRABHU P, SUDHANDIRAN G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2[J]. Investigational New Drugs, 2011, 29(2):207-224.
    [5] HIGUERA-CIAPARA I, FÉLIX-VALENZUELA L, GOYCOOLEA F M. Astaxanthin:a review of its chemistry and applications[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2):185-196.
    [6] LIU Z Q, ZHANG J F, ZHENG Y G, et al. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation[J]. Journal of Applied Microbiology, 2008, 104(3):861-872.
    [7] 李艳, 高静. 雨生红球藻天然虾青素提取研究进展[J]. 食品与机械, 2020, 36(12):211-217. LI Y, GAO J. Research progress on the extraction of natural astaxanthin from Haematococcus pluvialis[J]. Food and Machinery, 2020, 36(12):211-217.
    [8] SUN W H, XING L H, LIN H, et al. Assessment and comparison of in vitro immunoregulatory activity of three astaxanthin stereoisomers[J]. Journal of Ocean University of China, 2016, 15(2):283-287.
    [9] 魏东, 臧晓南. 大规模培养雨生红球藻生产天然虾青素的研究进展和产业化现状[J]. 中国海洋药物, 2001, 20(5):4-8. WEI D, ZANG X N. Production of natural astaxanthin by mass cultivation of Haematococcus pluvialis:research advances and current situation of industrialization[J]. Chinese Journal of Marine Drugs, 2001, 20(5):4-8.
    [10] 成永旭, 蒋霞敏, 陈学豪, 等. 生物饵料培养学[M]. 2版. 北京:中国农业出版社, 2005:47-48. CHENG Y X, JIANG X M, CHEN X H, et al. Biological feed cultivation[M]. 2nd ed. Beijing:China Agriculture Press, 2005:47-48.
    [11] 龙元薷. 乙酸钠兼养下雨生红球藻生长特性分析[D]. 青岛:中国科学院海洋研究所, 2014:5-9. LONG Y R. Growth characteristics analysis of Haematococcus pluvialis undermixotrophic culture with sodium acetate[D]. Qingdao:Institute of Oceanology, Chinese Academy of Sciences, 2014:5-9.
    [12] 尚敏敏. 不同诱导条件对Haematococcus pluvialis LUGU虾青素积累的影响及其机制的初步研究[D]. 昆明:昆明理工大学, 2016:22. SHANG M M. Investigation on the effect and their mechanism of different induction condition on astaxanthin production in Haematococcus pluvialis LUGU[D].Kunming:Kunming University of Science and Technology, 2016:22.
    [13] 赵陆敏. 基于绿球藻、大型溞的猪场沼液净化及资源化利用的研究[D]. 上海:上海海洋大学, 2018:11-12. ZHAO L M. Study on purification and resource utilization of piggery biogas slurry based on Chlorococcum sp. and Daphnia magna Straus[D]. Shanghai:Shanghai Ocean University, 2018:11-12.
    [14] 尚敏敏, 赵永腾, 赵鹏, 等. 黄腐酸对Haematococcus pluvialis LUGU虾青素积累和lcy基因表达量的影响[J]. 食品与生物技术学报, 2017, 36(7):702-706. SHANG M M, ZHAO Y T, ZHAO P, et al. Effects of Fulvicacid on Astaxanthin accumulation and the transcript levels expression kinetics of lcy Gene of Haematococcus pluvialis LUGU[J]. Journal of Food Science and Biotechnology, 2017, 36(7):702-706.
    [15] 段绍君, 孙玉柱, 宋兴福, 等. 响应曲面法优化碳酸锂反应结晶工艺[J]. 化工学报, 2017, 68(11):4169-4177. DUAN S J, SUN Y Z, SONG X F, et al. Optimization of reactive-crystallization process of lithium carbonate based on response surface methodology[J]. CIESC Jorunal, 2017, 68(11):4169-4177.
    [16] KARACAN F, OZDEN U, KARACAN S. Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology[J]. Applied Thermal Engineering, 2007, 27(7):1212-1218.
    [17] FÁBREGAS J, OTERO A, MASEDA A, et al. Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis[J]. Journal of Biotechnology, 2001, 89(1):65-71.
    [18] PEREIRA S, OTERO A. Haematococcus pluvialis bioprocess optimization:effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response[J]. Algal Research, 2020, 51:102027.
    [19] XUE S Z, SU Z F, CONG W. Growth of Spirulina platensis enhanced under intermittent illumination[J]. Journal of biotechnology, 2011, 151(3):271-277.
    [20] 陈书秀, 梁英. 光照强度对雨生红球藻叶绿素荧光特性及虾青素含量的影响[J]. 南方水产, 2009, 5(1):1-8. CHEN S X, LIANG Y. Effects of illumination on the chlorophyll fluorescence parameters and astaxanthin content of Haematococcus pluvialis[J]. South China Fisheries Science, 2009, 5(1):1-8.
    [21] HARKER M, TSAVALOS A J, YOUNG A J. Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis[J]. Journal of Applied Phycology, 1995, 7(4):399-406.
    [22] 才金玲, 欧阳泽瑞, 陈国兴, 等. 光照强度对雨生红球藻细胞生长和虾青素积累的影响[J]. 食品科技, 2013, 38(1):17-20, 25. CHAI J L, OUYANG Z R, CHEN G X, et al. Influence of light intensity on cell growth and astaxanthin production by Haematococcus pluvialis[J]. Food Science and Technology, 2013, 38(1):17-20, 25.
    [23] 董庆霖, 邢向英, 赵学明. 光照强度对雨生红球藻合成虾青素的影响[J]. 水生生物学报, 2007, 31(3):445-447. DONG Q L, XING X Y, ZHAO X M. Effect of light intensity on astaxanthin synthesis in Haematococcus pluvialis[J]. Acta Hydrobiologica Sinica, 2007, 31(3):445-447.
    [24] 陶云莹, 王巧晗, 赫勇, 等. 光照强度和温度对雨生红球藻生长、虾青素及内源脱落酸积累的影响[J]. 中国海洋大学学报, 2016, 46(8):28-36. TAO Y Y, WANG Q H, HE Y, et al. Effects of light intensity and temperature on the growth and accumulation of Astaxanthin and Endogenous Abscisic Acid (ABA) of Haematococcus plivialis[J]. Periodical of Ocean University of China, 2016, 46(8):28-36.
    [25] GREENE R M, GEIDER R J, KOLBER Z, et al. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae[J]. Plant Physiology, 1992, 100(2):565-575.
    [26] HARKER M, TSAVALOS A J, YOUNG A J. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis[J]. Bioresource Technology, 1996, 55(3):207-214.
    [27] BOYD P W, RYNEARSON T A, ARMSTRONG E A, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study[J]. PLoS One, 2013, 8(5):e63091.
    [28] JIAO J, GRODZINSKI B. The effect of leaf temperature and photorespiratory conditions on export of sugars during steady-state photosynthesis in Salvia splendens[J]. Plant Physiology, 1996, 111(1):169-178.
    [29] WAN M X, ZHANG J K, HOU D M, et al. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation[J]. Bioresource Technology, 2014, 167:276-283.
    [30] 张宝玉, 李夜光, 耿亚红, 等. 适合大量培养的红球藻藻种的筛选[J]. 水生生物学报, 2004, 28(3):289-293. ZHANG B Y, LI Y G, GENG Y H, et al. Selection of Haematococcus strains suitable for mass culture[J]. Acta Hydrobiologica Sinica, 2004, 28(3):289-293.
    [31] 苗凤萍, 李夜光, 耿亚红, 等. 温度对雨生红球藻(Haematococcus pluvialis)生物量和虾青素产量的影响[J]. 武汉植物学研究, 2005, 23(1):73-76. MIAO F P, LI Y G, GENG Y H, et al. The effects of temperature on the biomass and the Astaxanthin Output of Haematococcus pluvialis[J]. Journal of Wuhan Botanical Research, 2005, 23(1):73-76.
    [32] ZHANG X W, GONG X D, CHEN F. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis[J]. Journal of Industrial Microbiology and Biotechnology, 1999, 23(1):691-696.
    [33] 江红霞, 林雄平, 雷梦云, 等. 温度对雨生红球藻生长、虾青素累积和抗氧化能力的影响[J]. 水生态学杂志, 2015, 36(4):63-68. JIANG H X, LIN X P, LEI M Y, et al. Effects of temperature on growth, astaxanthin accumulation and Antioxidative capacity in Haematococcus pluvialis[J]. Journal of Hydroecology, 2015, 36(4):63-68.
    [34] 李艳国, 杨柳, 徐年军, 等. 雨生红球藻ZL-1生长和虾青素积累条件优化[J]. 生态科学, 2018, 37(1):20-26. LI Y G, YANG L, XU N J, et al. Optimization of growth and astaxanthin accumulation of Haematococcus pluvialis ZL-1[J]. Ecological Science, 2018, 37(1):20-26.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

戴颖,穆亮亮,黄旭雄.一株新分离雨生红球藻培养条件的优化[J].上海海洋大学学报,2023,32(1):68-78.
DAI Ying, MU Liangliang, HUANG Xuxiong. Optimization of culture conditions for a newly isolated microalga Haematococcus pluvialis[J]. Journal of Shanghai Ocean University,2023,32(1):68-78.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 27,2021
  • Revised:January 16,2022
  • Adopted:February 02,2022
  • Online: January 12,2023
Article QR Code