Effects of different vibration modes on Vibrio parahaemolyticus biofilm
CSTR:
Author:
Clc Number:

TS201.3

Fund Project:

the National Natural Science Foundation of China (31571917 and 31671779), Shanghai Agriculture Applied Technology Development Program (Grant No.G20150408, G20160101) , the “Dawn” Program of Shanghai Education Commission (15SG48).

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    Vibrio parahaemolyticus biofilm formation in the food factory environment was studied, in order to prevent and control the biofilm pollution effectively. The different vibration modes of food processing equipment (such as horizontal rotary vibration, bevel vibration and vertical rotary vibration) were simulated to investigate Vibrio parahaemolyticus formation process on the surfaces of glass and stainless steel for 72 h, and the effect of vibration on the biomass, architecture and extracellular polymeric substances of biofilm was analyzed. The results showed that:the biofilm formation under shaking cultivation decreased significantly; the biomass of biofilm was the least under vertical rotary vibration; the biomass of biofilm on the stainless steel surface is greater than that on glass surface under same shaking cultivation; the biofilm formation was reduced with the increasing of horizontal rotation speed; the vibration caused the biovolume decreased, and the porosity and homogeneity increased, the architecture of biofilm dispersed; and the amount of extracellular polysaccharides and extracellular proteins of the biofilm decreased. All results show that different vibration modes have different effects on the biofilm; the selection of the vertical rotary vibration mode out of the three vibration modes can reduce and inhibit the growth of the biofilm effectively; the vibration cause the reduction of exopolysaccharide and protein, affecting the structural characteristics such as porosity and homogeneity; and the structure and formation of biofilm becomes simple and decrease.

    Reference
    [1] BOONYAWANTANG A, MAHAKARNCHANAKUL W, RACH-TANAPUN C, et al. Behavior of pathogenic Vibrio parahaemolyticus in prawn in response to temperature in laboratory and factory[J]. Food Control, 2012, 26(2):479-485.
    [2] RASZL S M, FROELICH B A, VIEIRA C R W, et al. Vibrio parahaemolyticus and Vibrio vulnificus in South America:water, seafood and human infections[J]. Journal of Applied Microbiology, 2016, 121(5):1201-1222.
    [3] BROBERG C A, CALDER T J, ORTH K. Vibrio parahaemolyticus cell biology and pathogenicity determinants[J]. Microbes and Infection, 2011, 13(12/13):992-1001.
    [4] JAMAL M, AHMAD W, ANDLEEB S, et al. Bacterial biofilm and associated infections[J]. Journal of the Chinese Medical Association, 2018, 81(1):7-11.
    [5] LIU Y, TAY J H. Detachment forces and their influence on the structure and metabolic behaviour of biofilms[J]. World Journal of Microbiology and Biotechnology, 2001, 17(2):111-117.
    [6] 陈小雪, 陈晶瑜, 韩北忠. 食品加工过程中细菌生物被膜的危害及控制[J]. 中国酿造, 2016, 35(1):1-4. CHEN X X, CHEN J Y, HAN B Z. Hazard and control of bacterial biofilm during the food processing[J]. China Brewing, 2016, 35(1):1-4.
    [7] DEGUCHI S, SHIMOSHIGE H, TSUDOME M, et al. Microbial growth at hyperaccelerations up to 403, 627×g[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19):7997-8002.
    [8] PETERSON B W, HE Y, REN Y J, et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges[J]. FEMS Microbiology Reviews, 2015, 39(2):234-245.
    [9] BILLINGS N, BIRJINIUK A, SAMAD T S, et al. Material properties of biofilms-a review of methods for understanding permeability and mechanics[J]. Reports on Progress in Physics, 2015, 78(3):036601.
    [10] FABBRI S, LI J, HOWLIN R P, et al. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms[J]. Environmental Microbiology, 2017, 19(11):4417-4431.
    [11] SONG X Y, MA Y J, FU J J, et al. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation[J]. Food Control, 2017, 73:485-491.
    [12] ANTONIANI D, BOCCI P, MACIAG A, et al. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors[J]. Applied Microbiology and Biotechnology, 2010, 85(4):1095-1104.
    [13] DOREL C, VIDAL O, PRIGENT-COMBARET C, et al. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation[J]. FEMS Microbiology Letters, 1999, 178(1):169-175.
    [14] JIN H, ZHOU R, KANG M S, et al. Biofilm formation by field isolates and reference strains of Haemophilus parasuis[J]. Veterinary Microbiology, 2006, 118(1/2):117-123.
    [15] O'TOOLE G A, KOLTER R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways:a genetic analysis[J]. Molecular Microbiology, 1998, 28(3):449-461.
    [16] KIM H S, PARK H D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14[J]. PLoS One, 2013, 8(9):e76106.
    [17] NAKAMURA H, TAKAKURA K I, SONE Y, et al. Biofilm formation and resistance to benzalkonium chloride in Listeria monocytogenes isolated from a fish processing plant[J]. Journal of Food Protection, 2013, 76(7):1179-1186.
    [18] 刘露露, 徐溢, 王人杰, 等. 生物被膜的形成及其电化学阻抗检测[J]. 生物工程学报, 2018, 34(3):320-333. LIU L L, XU Y, WANG R J, et al. Detection of biofilms formation by electrochemical impedance spectroscopy[J]. Chinese Journal of Biotechnology, 2018, 34(3):320-333.
    [19] 柴旭锋, 齐家伟, 赵莉, 等. 副溶血弧菌在鱼鳞表面形成生物被膜的动态过程及酸性电解水对其清除效果[J]. 上海海洋大学学报, 2019, 28(5):792-800. CHAI X F, QI J W, ZHAO L, et al. Eradication effect of acidic electrolyzed water on Vibrio parahemolyticus biofilm formed on fish scale surface[J]. Journal of Shanghai Ocean University, 2019, 28(5):792-800.
    [20] 甘田生, 龚湘君. 生物被膜的物理特性及其表征[J]. 生物工程学报, 2017, 33(9):1390-1398. GAN T S, GONG X J. Characterization of the physical properties of biofilms[J]. Chinese Journal of Biotechnology, 2017, 33(9):1390-1398.
    [21] CARPENTIER B, CERF O. Biofilms and their consequences,with particular reference to hygiene in the food industry[J]. Journal of Applied Bacteriology, 1993, 75(6):499-511.
    [22] DUNNE W M JR. Bacterial adhesion:seen any good biofilms lately?[J]. Clinical Microbiology Reviews, 2002, 15(2):155-166.
    [23] 赵爱静, 付娇娇, 宋雪迎, 等. 致病性与非致病性副溶血性弧菌在不同温度和接触材料表面生物被膜形成情况分析[J]. 食品与生物技术学报, 2018, 37(1):7-14. ZHAO A J, FU J J, SONG X Y, et al. Analysis of biofilm formation by pathogenic and no-pathogenic Vibrio parahaemolyticus at various temperatures and contact surfaces[J]. Journal of Food Science and Biotechnology, 2018, 37(1):7-14.
    [24] 石文琪, 张会彦, 胡泽阳, 等. 金黄色葡萄球菌在静置和振荡培养条件下的生物被膜构造[J]. 中国食品学报, 2018, 18(4):37-44. SHI W Q, ZHANG H Y, HU Z Y, et al. Biofilm architecture of Staphylococcus aureus during static and shaking cultivation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(4):37-44.
    [25] SCHMIDT J C, ASTASOV-FRAUENHOFFER M, WALTIMO T, et al. Efficacy of various side-to-side toothbrushes and impact of brushing parameters on noncontact biofilm removal in an interdental space model[J]. Clinical Oral Investigations, 2017, 21(5):1565-1577.
    [26] 朱秀菊, 王嫣, 余加林, 等. 高强度聚焦超声对体外铜绿假单胞菌生物被膜的杀菌作用及其空间结构的影响[J]. 中国超声医学杂志, 2011, 27(2):97-101. ZHU X J, WANG Y, YU J L, et al. Effects of high-intensity focused ultrasound on bactericidal action and structure of Pseudomonas aeruginosa biofilm in vitro[J]. Chinese Journal of Ultrasound in Medicine, 2011, 27(2):97-101.
    [27] OBERHOLZER C, OBERHOLZER A, CLARE-SALZLER M, et al. Apoptosis in sepsis:a new target for therapeutic exploration[J]. The FASEB Journal, 2001, 15(6):879-892.
    [28] SEREBRYANNYY L, PARILLA M, ANNIBALE P, et al. Nuclear actin dynamics regulate nuclear organization and transcription[J]. Biophysical Journal, 2015, 108(2):536a.
    [29] SATPUTE S K, BANAT I M, DHAKEPHALKAR P K, et al. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms[J]. Biotechnology Advances, 2010, 28(4):436-450.
    [30] DWORKIN M, FALKOW S, ROSENBERG E, et al. The prokaryotes:volume 1:symbiotic associations, biotechnology, applied microbiology[M]. 3rd ed. New York:Springer, 2006.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

齐家伟,董旭日,柴旭锋,韩乔,张昭寰,檀玲,刘海泉,潘迎捷,赵勇.不同振动模式对副溶血性弧菌生物被膜形成的影响[J].上海海洋大学学报,2020,29(6):950-960.
QI Jiawei, DONG Xuri, CHAI Xufeng, HAN Qiao, ZHANG Zhaohuan, TAN Ling, LIU Haiquan, PAN Yingjie, ZHAO Yong. Effects of different vibration modes on Vibrio parahaemolyticus biofilm[J]. Journal of Shanghai Ocean University,2020,29(6):950-960.

Copy
Share
Article Metrics
  • Abstract:2412
  • PDF: 1745
  • HTML: 448
  • Cited by: 0
History
  • Received:April 25,2019
  • Revised:April 16,2020
  • Adopted:May 09,2020
  • Online: December 01,2020
Article QR Code