摘要
为研究低温胁迫对克氏原螯虾(Procambarus clarkii)抗氧化与非特异性免疫能力的影响,本实验设置4个温度组 (对照组:23 ℃,低温组:9 ℃、5 ℃、1 ℃),在各个温度组采集肝胰腺、鳃和血淋巴,并测定抗氧化与免疫相关酶活性和基因表达。抗氧化与免疫酶结果显示,低温胁迫下克氏原螯虾肝胰腺和血淋巴中总抗氧化能力(T-AOC)活性逐渐上升。肝胰腺和血淋巴中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)、酸性磷酸酶(ACP)和碱性磷酸酶(AKP)活性均先上升后下降。丙二醛(MDA)含量均逐渐增加,在1 ℃时达到最高。肝胰腺中过氧化氢酶(CAT)逐渐下降,血淋巴中先上升后下降。基因表达结果显示,低温胁迫下克氏原螯虾鳃和肝胰腺组织中SOD、CAT、甲壳素(Crustin)基因mRNA表达量随温度降低先上升后下降,热休克蛋白70(HSP70)基因mRNA表达量在鳃中无显著变化,在肝胰腺中先上升后下降。综上所述,低温胁迫下克氏原螯虾的机体会发生氧化应激反应,抗氧化与免疫系统调节提高抗氧化与免疫酶活性,且诱导抗氧化与免疫基因高表达,以此来应对低温造成的氧化损伤,保护细胞活性维持正常生命活动。研究结果为克氏原螯虾稻虾综合种养模式下冬季健康养殖和耐低温品系的选育提供一定的理论基础。
克氏原螯虾(Procambarus clarkii),隶属节肢动物门(Arthropoda)甲壳纲(Crustacea)十足目(Decapoda)螯虾科(Cambaridae)。2022年中国克氏原螯虾养殖面积187万h
低温会导致甲壳动物体内发生氧化应激反应,活性氧累积,造成细胞氧化损
本研究以克氏原螯虾为实验材料,通过测定对照组和低温组克氏原螯虾抗氧化与免疫相关指标,包括总抗氧化能力(T-AOC)、SOD、CAT、GSH-PX、ACP、碱性磷酸酶(AKP)活性和MDA含量,以及测定抗氧化与免疫相关基因SOD、CAT、甲壳素(Crustin)以及HSP70基因mRNA表达量。本实验目的在于研究低温胁迫对克氏原螯虾抗氧化与免疫能力的影响,为进一步研究克氏原螯虾对低温胁迫的应答机制提供新的见解,并为克氏原螯虾耐低温苗种的选育提供理论依据。
实验所用克氏原螯虾来自江苏宿迁霸王蟹产业发展中心(34°3′54″N,118°4′60″E)。挑选活力较强、体表完好无损的克氏原螯虾共120尾作为实验用虾,体长(62.07±4.26)mm,体质量(9.70±2.13)g。饲养于容量为300 L(119 cm×89 cm×32 cm)的水族箱中。克氏原螯虾在室内循环水养殖系统暂养14 d后进行正式试验,实验前48 h停止喂食。暂养期间,温度保持在(23±0.5)℃,pH 7.5±0.5,光周期为光照12 h∶黑暗12 h。每天早晚投喂商品饲料2次,日投喂量为虾体质量的3%。饲喂2 h后及时用虹吸管吸出残饵和粪便,日换水量为1/2。
暂养结束后,在119 cm×89 cm×32 cm水族箱中,通过冷暖机(森森HYH-1.5DR-B 1.5匹,天津锐景环保设备有限公司)调节水温。每个温度组各30尾实验虾。在23 ℃(克氏原螯虾最佳温

图1 低温取样时间点示意图
Fig.1 Schematic diagram of sample collection under low temperature
将采集的克氏原螯虾肝胰腺样品按质量体积比1∶9加入预冷的0.9% 生理盐水,用冷冻研磨仪进行研磨,频率30次/s,3 min研磨充分后取出。再于超低温冷冻离心机中4 ℃,2 500 r/min离心20 min,取中间清液再次离心制成 10% 的组织匀浆待测。血浆样品测定前于冰上解冻,待测。利用南京建成生物工程研究所的试剂盒分别检测血淋巴及肝胰腺组织匀浆液中T-AOC、SOD、CAT、GSH-PX、AKP、ACP活性及MDA含量,使用酶标仪[Spectra Max iD3,美谷分子仪器(上海)有限公司]进行测定,具体方法参照说明书,组织蛋白质量浓度采用考马斯亮蓝法。
从NCBI数据库中获取克氏原螯虾抗氧化酶及免疫基因序列,使用Primer 6.0软件设计克氏原螯虾基因引物如
基因 Gene | 引物序列 Primer sequences (5′-3′) | 基因序列号 GenBank accession number |
---|---|---|
SOD-F | CGCCGATGTAAGACTGGGACG | TRINITY-DN63424-c1-g1 |
SOD-R | CTCCAGGTAAACACGGCTTCCAT | |
CAT-F | TCCTGTGAACTGTCCCTATCGTG | TRINITY-DN27834-c0-g1 |
CAT-R | AACCCAGTCTTCTTACAATCAACG | |
Crustin-F | CTCTGACTGCCAGGTGTTT | NW-020872843.1 |
Crustin-R | TGCGAGCTGTGATGGTTAG | |
HSP 70-F | GTTGACCAAGATGAAGGAGAC | DQ-301506.1 |
HSP 70-R | CTGACGCTGAGAGTCGTTG | |
β-actin-F | GTCAGGTCATCACCATCGGCA | HQ-414542.1 |
β-actin-R | CGGTCTCGTGAACACCAGCA |
使用RNAiso Plus(TaKaRa)试剂对采集的克氏原螯虾鳃和肝胰腺组织样本进行提取总RNA,用移液枪吸取3 µL样品使用酶标仪超微量检测板[Spectra Max iD3,美谷分子仪器(上海)有限公司]测定提取的RNA浓度。根据PrimeScript™ RT reagent Kit with gDNA Eraser(TaKaRa)试剂盒说明书将总RNA反转录合成cDNA。使用qPCR仪(qotwer3G,耶拿)进行荧光定量PCR分析。PCR反应结束后,进行溶解曲线的扩增。以β-actin为内参基因,使用内存基因的Ct值来归一化目标基因的Ct值,然后使用将归一化的数值进行比较得出差异倍数,将对照组(23 ℃组)的归一化后基因表达量设置为“1”,实验组的归一化后基因表达量以对比对照组增加或降低来表示,采用
低温对克氏原螯虾肝胰腺抗氧化酶活性的影响如

图2 低温对克氏原螯虾肝胰腺抗氧化酶活性的影响
Fig.2 Effect of low temperature on antioxidant enzyme activity in hepatopancreas of P. clarkii
箱线图盒子上下底代表分位数,盒子内的线代表中位数。箱须代表每个数据集的最小值和最大值。箱须上方的不同小写字母表示在Duncan氏法多重检验中,这些组间存在显著差异(P < 0.05)。
Boxplot boxes on top and bottom represent quantiles, and the lines within the boxes represent the median. Whiskers describe the minimum and maximum values for each dataset. The different lowercase letters above the box whiskers indicate that there were significant differences in the Duncan’s multiple test between these groups (P < 0.05).
低温对克氏原螯虾血浆中抗氧化酶活性的影响如

图3 低温对克氏原螯虾血浆抗氧化酶活性的影响
Fig.3 Effect of low temperature on antioxidant enzyme activity in haemolymph of P. clarkii
箱线图盒子上下底代表分位数,盒子内的线代表中位数。箱须代表每个数据集的最小值和最大值。箱须上方的不同小写字母表示在Duncan氏法多重检验中,这些组间存在显著差异(P < 0.05)。
Boxplot boxes on top and bottom represent quantiles, and the lines within the boxes represent the median. Whiskers describe the minimum and maximum values for each dataset. The different lowercase letters above the box whiskers indicate that there were significant differences in the Duncan’s multiple test between these groups (P < 0.05).
低温对克氏原螯虾肝胰腺中免疫酶活性的影响如

图4 低温对克氏原螯虾肝胰腺磷酸酶活性的影响
Fig.4 Effect of low temperature on phosphatase enzyme activity in hepatopancreas of P. clarkii
低温对克氏原螯虾血浆中磷酸酶活性的影响如

图5 低温对克氏原螯虾血浆磷酸酶活性的影响
Fig.5 Effect of low temperature on phosphatase enzyme activity in haemolymph of P. clarkii
克氏原螯虾的SOD基因mRNA表达量随着温度的降低先上升后下降,鳃中9 ℃时显著提高达到最大值,为对照组23 ℃的2.03倍(P=0.031),肝胰腺中5 ℃时显著提高达到最大值,为对照组23 ℃的4.04倍(P<0.001,

图6 低温对克氏原螯虾SOD、CAT、Crustin和HSP70基因mRNA表达量的影响
Fig.6 Effects of low temperature on SOD, CAT, Crustin and HSP70 mRNA expression in P. clarkii
在正常环境下,甲壳动物都有一套比较完善的抗氧化系统,分为酶类抗氧化系统和非酶类抗氧化系统,这是机体的一种保护机制,来抵抗活性氧对机体的氧化损
SOD、CAT和GSH-PX是生物机体内最主要的抗氧化
ACP和AKP是溶酶体中主要的水解
SOD和CAT基因mRNA表达量会受到外界环境的影响而改
本研究对低温胁迫下克氏原螯虾抗氧化与非特异性免疫能力进行测定,目的是找出克氏原螯虾对低温的适应机制。在低温应激下,抗氧化与非特异性免疫系统被激活,抗氧化与免疫酶活性提高,且低温诱导体内抗氧化与免疫基因表达水平提高,以此来应对低温造成的氧化损伤,保护细胞活性维持正常生命活动;但随着温度持续下降,克氏原螯虾抗氧化与免疫能力降低。
利益冲突
作者声明本文无利益冲突
参考文献
于秀娟, 郝向举, 杨霖坤, 等. 中国小龙虾产业发展报告(2023)[J]. 中国水产, 2023(7): 26-31. [百度学术]
YU X J, HAO X J, YANG L K, et al. China crayfish industry development report(2023)[J]. China Fisheries, 2023(7): 26-31. [百度学术]
YUE G H, FENG J B, XIA J H, et al. Inferring the invasion mechanisms of the red swamp crayfish in China using mitochondrial DNA sequences[J]. Aquaculture and Fisheries, 2021, 6(1): 35-41. [百度学术]
YU J X, REN Y, XU T, et al. Physicochemical water quality parameters in typical rice-crayfish integrated systems (RCIS) in China[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 54-60. [百度学术]
韩晓磊, 李小蕊, 程东成, 等. 温度对克氏原螯虾交配、抱卵、孵化和幼体生长发育的影响[J]. 湖北农业科学, 2011, 50(10): 2078-2080. [百度学术]
HAN X L, LI X R, CHENG D C, et al. Effect of temperature on mating, oogenesis, hatching and larvae development of red swamp crayfish (Procambrus clarkii)[J]. Hubei Agricultural Sciences, 2011, 50(10): 2078-2080. [百度学术]
王天神, 周鑫, 赵朝阳, 等. 不同温度条件下克氏原螯虾免疫酶活性变化[J]. 江苏农业科学, 2012, 40(12): 239-241. [百度学术]
WANG T S, ZHOU X, ZHAO C Y, et al. Changes in immunity activities of crayfish (Procambarus clarkii) under different temperature conditions[J]. Jiangsu Agricultural Sciences, 2012, 40(12): 239-241. [百度学术]
倪静静, 魏万红, 郑友, 等. 不同水温对克氏原螯虾食性影响的研究[J]. 水产养殖, 2015, 36(10): 11-14. [百度学术]
NI J J, WEI W H,ZHENG Y, et al. Research on feeding effect of Procambarus claikii under different water temperature[J]. Journal of Aquaculture, 2015, 36(10): 11-14. [百度学术]
李铭, 董卫军, 邢迎春, 等. 温度对克氏原螯虾幼虾发育和存活的影响[J]. 水利渔业, 2006(2): 36-37. [百度学术]
LI M, DONG W J, XING Y C, et al. Influence of temperature on the development and survival of crayfish larvae[J]. Journal of Hydroecology, 2006(2): 36-37. [百度学术]
陈颖, 江远安, 毛炜峄, 等. 气候变化背景下新疆北部2009/2010年冬季雪灾[J]. 气候变化研究进展, 2011, 7(2): 104-109. [百度学术]
CHEN Y, JIANG Y A, MAO W Y, et al. 2009/2010 winter snow disaster in northern Xinjiang under global warming[J]. Advances in Climate Change Research, 2011, 7(2): 104-109. [百度学术]
刘艳, 郑育琳, 刘精, 等. 增暖背景下2023年4-5月新疆低温维持机制分析[J]. 沙漠与绿洲气象, 2023, 17(6): 60-66. [百度学术]
LIU Y, ZHENG Y L, LIU J, et al. Mechanisms for maintenance of low temperature in Xinjiang in April-May 2023 under the background of climate warming[J]. Desert and Oasis Meteorology, 2023, 17(6): 60-66. [百度学术]
王晓娟, 龚志强, 任福民, 等. 1960—2009年中国冬季区域性极端低温事件的时空特征[J]. 气候变化研究进展, 2012, 8(1): 8-15. [百度学术]
WANG X J, GONG Z Q, REN F M, et al. Spatial/temporal characteristics of China regional extreme low temperature events in winter during 1960-2009[J]. Climate Change Research, 2012, 8(1): 8-15. [百度学术]
李尚锋, 廉毅, 陈圣波, 等. 东北初夏极端低温事件的空间分布特征及其成因机理分析[J]. 地理科学, 2012, 32(6): 752-758. [百度学术]
LI S F, LIAN Y, CHEN S B, et al. Distribution of extreme cool events over Northeast China in early summer and the related dynamical processes[J]. Scientia Geographica Sinica, 2012, 32(6): 752-758. [百度学术]
李言蹊, 陈海山. 冬季亚洲中纬度极端低温事件与巴伦支-喀拉海异常增暖的关系及联系机制[J]. 大气科学, 2021, 45(4): 889-900. [百度学术]
LI Y X, CHEN H S. The relationship between winter extremely low temperature events in mid-latitude Asia and abnormal warming over Barents-Kara Seas and associated mechanism[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 889-900. [百度学术]
XU Z H, REGENSTEIN J M, XIE D D, et al. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure[J]. Fish & Shellfish Immunology, 2018, 72: 564-571. [百度学术]
QIU J, WANG W N, WANG L J, et al. Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011, 154(1): 36-41. [百度学术]
朱孟凯, 姚翠鸾. 温度胁迫对凡纳滨对虾肝胰腺氧代谢及能量代谢的影响[J]. 水产学报, 2015, 39(5): 669-678. [百度学术]
ZHU M K, YAO C L. The impact of temperature stress on the oxygen metabolism and energy metabolism in the hepatopancreas of shrimp Litopenaeus vannamei[J]. Journal of Fisheries of China, 2015, 39(5): 669-678. [百度学术]
ZHOU J, WANG L, XIN Y, et al. Effect of temperature on antioxidant enzyme gene expression and stress protein response in white shrimp, Litopenaeus vannamei[J]. Journal of Thermal Biology, 2010, 35(6): 284-289. [百度学术]
JIANG S, ZHOU F L, YANG Q B, et al. Impact of temperature stress on oxygen and energy metabolism in the hepatopancreas of the black tiger shrimp, Penaeus monodon (Crustacea: Decapoda: Penaeidae)[J]. Pakistan Journal of Zoology, 2018, 51(1): 141-148. [百度学术]
KONG X H, WANG G Z, LI S J. Seasonal variations of ATPase activity and antioxidant defenses in gills of the mud crab Scylla serrata (Crustacea, Decapoda)[J]. Marine Biology, 2008, 154(2): 269-276. [百度学术]
丁小丰, 杨玉娇, 金珊, 等. 温度变化对锯缘青蟹免疫因子的胁迫影响[J]. 水产科学, 2010, 29(1): 1-6. [百度学术]
DING X F, YANG Y J, JIN S, et al. The stress effects of temperature fluctuation on immune factors in crab Scylla serrata[J]. Fisheries Science, 2010, 29(1): 1-6. [百度学术]
FU W D, ZHANG F J, LIAO M F, et al. Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata[J]. Fish & Shellfish Immunology, 2013, 34(5): 1306-1314. [百度学术]
于振兴, 任宪云, 邵慧鑫, 等. 低温胁迫对日本对虾抗氧化系统和细胞凋亡的影响[J]. 渔业科学进展, 2022, 43(2): 157-166. [百度学术]
YU Z X, REN X Y, SHAO H X, et al. Effect of low temperature stress on antioxidant system and apoptosis of Marsupenaeus japonicus[J]. Progress in Fishery Sciences, 2022, 43(2): 157-166. [百度学术]
郭红会, 胡振, 张金刚, 等. 鱼类环境耐受性与抗逆性育种研究进展[J]. 水产学报, 2023, 47(1): 68-93. [百度学术]
GUO H H, HU Z, ZHANG J G, et al. Advances in environmental tolerance and resistance breeding in fish[J]. Journal of Fisheries of China, 2023, 47(1): 68-93. [百度学术]
CHENG S Y, HSU S W, CHEN J C. Effect of sulfide on the immune response and susceptibility to Vibrio alginolyticus in the kuruma shrimp Marsupenaeus japonicus[J]. Fish & Shellfish Immunology, 2007, 22(1/2): 16-26. [百度学术]
YANG S P, WU Z H, JIAN J C, et al. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei[J]. Aquaculture, 2010, 309(1/4): 62-65. [百度学术]
APAK R, ÖZYÜREK M, GÜÇLÜ K, et al. Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays[J]. Journal of Agricultural and Food Chemistry, 2016, 64(5): 997-1027. [百度学术]
贲月, 郝振林, 丁君, 等. 高温对虾夷扇贝体腔液免疫酶活力的影响[J]. 水产学报, 2013, 37(6): 858-863. [百度学术]
BEN Y, HAO Z L, DING J, et al. Effects of high temperature on the immuno-enzymetic activity in coelomic fluid of Mizuhopecten yessoensis[J]. Journal of Fisheries of China, 2013, 37(6): 858-863. [百度学术]
魏克强, 庞胜喜, 赵辉, 等. C
WEI K Q, PANG S X, ZHAO H, et al. Oxidative damages of proteins in hepatopancreas of Procambarus clarkii exposed to C
王芸, 李健, 何玉英, 等. 氨氮胁迫对中国明对虾血淋巴氨氮、尿素氮含量和抗氧化能力的影响[J]. 中国水产科学, 2017, 24(1): 180-189. [百度学术]
WANG Y, LI J, HE Y Y, et al. Effects of ambient ammonia-N exposure on hemolymph nitrogen metabolism and antioxidant capacity of Fenneropenaeus chinensis[J]. Journal of Fishery Sciences of China, 2017, 24(1): 180-189. [百度学术]
WINSTON G W. Oxidants and antioxidants in aquatic animals[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100(1/2): 173-176. [百度学术]
IGHODARO O M, AKINLOYE O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine, 2018, 54(4): 287-293. [百度学术]
GUO H, XIAN J A, LI B, et al. Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2013, 157(4): 366-371. [百度学术]
ORINO K, LEHMAN L, TSUJI Y, et al. Ferritin and the response to oxidative stress[J]. The Biochemical Journal, 2001, 357: 241-247. [百度学术]
CHIARADIA E, AVELLINI L, RUECA F, et al. Physical exercise, oxidative stress and muscle damage in racehorses[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1998, 119(4): 833-836. [百度学术]
MENG X L, LIU P, LI J, et al. Physiological responses of swimming crab Portunus trituberculatus under cold acclimation: antioxidant defense and heat shock proteins[J]. Aquaculture, 2014, 434: 11-17. [百度学术]
SHI H H, SUI Y X, WANG X R, et al. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2005, 140(1): 115-121. [百度学术]
解伟, 郭冉, 夏辉, 等. 黄曲霉毒素B1对凡纳滨对虾幼虾肝胰腺抗氧化酶的损伤机制[J]. 水产学报, 2017, 41(3): 448-455. [百度学术]
XIE W, GUO R, XIA H, et al. Damage mechanism of aflatoxin B1 on antioxidant enzyme in hepatopancreas of juvenile Litopenaeus vannamei[J]. Journal of Fisheries of China, 2017, 41(3): 448-455. [百度学术]
JIE Y K, CHENG C H, WANG L C, et al. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 245: 109039. [百度学术]
HAN M M, GAO T H, LIU G X, et al. The effect of a polystyrene nanoplastic on the intestinal microbes and oxidative stress defense of the freshwater crayfish, Procambarus clarkii[J]. Science of the Total Environment, 2022, 833, 155722. [百度学术]
刘树青, 江晓路, 牟海津, 等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼, 1999, 30(3): 278-283. [百度学术]
LIU S Q, JIANG X L, MOU H J, et al. Effects of immunopoiysaccharide on LSZ, ALP, ACP and POD activities of Penaeus chinensis serum[J]. Oceanologia et Limnologia Sinica, 1999, 30(3): 278-283. [百度学术]
陈永康, 陈泽恩, 梁武辉, 等. 酵母水解物对低盐胁迫凡纳滨对虾非特异性免疫及抗氧化能力的影响[J]. 水产学报, 2021, 45(12): 2061-2071. [百度学术]
CHEN Y K, CHEN Z E, LIANG W H, et al. Effect of yeast hydrolysate on non-specific immunity and antioxidant ability of Litopenaeus vannamei under low salinity stress[J]. Journal of Fisheries of China, 2021, 45(12): 2061-2071. [百度学术]
李文龙, 梁兴明, 梁萌青, 等. 温度对大菱鲆幼鱼生长及免疫相关酶活性的影响[J]. 水产科学, 2017, 36(3): 311-316. [百度学术]
LI W L, LIANG X M, LIANG M Q, et al. Effects of temperature on growth and enzyme activity related to immunity in Juvenile turbot Scophthalmus maximus[J]. Fisheries Science, 2017, 36(3): 311-316. [百度学术]
彭婷, 胡庭俊, 林勇, 等. 低温胁迫对罗非鱼血液生化、免疫及抗氧化指标的影响[J]. 水产科学, 2012, 31(5): 259-263. [百度学术]
PENG T, HU T J, LIN Y, et al. Effects of low temperature stress on indices of biochemistry, immunity and antioxidation in Nile Tilapia[J]. Fisheries Science, 2012, 31(5): 259-263. [百度学术]
GUO K, RUAN G L, FAN W H, et al. The effect of nitrite and sulfide on the antioxidant capacity and microbial composition of the intestines of red swamp crayfish, Procambarus clarkii[J]. Fish & Shellfish Immunology, 2020, 96: 290-296. [百度学术]
PERERA N C N, GODAHEWA G I, LEE J. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein[J]. Fish & Shellfish Immunology, 2016, 57: 386-399. [百度学术]
姜娓娓, 方建光, 李加琦, 等. 温度胁迫对皱纹盘鲍生理和生化活动的影响[J]. 中国水产科学, 2017, 24(2): 220-230. [百度学术]
JIANG W W, FANG J G, LI J Q, et al. Effects of temperature change on physiological and biochemical activities of Haliotis discus hannai Ino[J]. Journal of Fishery Sciences of China, 2017, 24(2): 220-230. [百度学术]
焦厚琪, 霍诗天, 闫黎明, 等. 克氏原螯虾一种新型甲壳素基因的鉴定和抑菌功能研究[J]. 水生生物学报, 2022, 46(2): 248-256. [百度学术]
JIAO H Q, HUO S T, YAN L M, et al. Identification of a new Crustin and study of its antibacterial function from Procambarus clarkii[J]. Acta Hydrobiologica Sinica, 2022, 46(2): 248-256. [百度学术]
ZENG Q H, LUO M Z, QIN L R, et al. Effects of hypoxia stress on survival, antioxidant and anaerobic metabolic enzymes, and related gene expression of red swamp crayfish Procambarus clarkii[J]. Biology, 2024, 13(1): 33. [百度学术]
YANG L S, YANG Q B, JIANG S G, et al. Metabolic, immune responses in prawn (Penaeus monodon) exposed to ambient ammonia[J]. Aquaculture International, 2015, 23(4): 1049-1062. [百度学术]
LI Z Q, ZHAO Z G, LUO L, et al. Immune and intestinal microbiota responses to heat stress in Chinese mitten crab (Eriocheir sinensis)[J]. Aquaculture, 2023, 563: 738965. [百度学术]
JI L Q, JIANG K Y, LIU M, et al. Low temperature stress on the hematological parameters and HSP gene expression in the turbot Scophthalmus maximus[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(3): 430-440. [百度学术]