摘要
灯笼鱼类是海洋中层鱼类中资源量最高的类群,其在连接海洋上层和中层食物网中发挥重要的作用。以西北太平洋闪光背灯鱼和加利福尼亚标灯鱼为研究对象,比较分析了肠道中微塑料的丰度与理化特征的潜在种间差异。结果表明,加利福尼亚标灯鱼和闪光背灯鱼肠道内微塑料的丰度分别为(6.54 ± 8.33)个/g[即(0.83 ± 0.90)个/尾)]和(11.33 ± 14.06)个/g[即(1.17 ± 1.27)个/尾],二者微塑料的丰度和粒径相似,形状均以纤维状为主(占比≥80.00%)。但微塑料的化学组成存在差异,加利福尼亚标灯鱼以聚对苯二甲酸乙二醇酯(36.00%)和聚丙烯酰胺(24.00%)为主,而闪光背灯鱼以赛璐玢(54.29%)和聚对苯二甲酸乙二醇酯(31.43%)为主。研究结果有助于了解相同海域灯笼鱼类间的微塑料污染现状,为进一步探究微塑料对海洋中层鱼类的生态效应提供基础数据。
塑料制品已被广泛应用于生产和生活的多个领域,成为人们生活中不可或缺的一部分。据统计,每年全球塑料产量约为4亿
灯笼鱼类是海洋中层鱼类中最常见且数量最多的鱼类种群,其生物量约为5.5×1
样品来自上海海洋大学“淞航”号远洋渔业资源调查船在西北太平洋的科考调查,采样时间为2022年7—8月,采样点如

图1 西北太平洋灯笼鱼类采集站点图
Fig.1 Map of lantern fish sampling sites in Northwest Pacific Ocean
所有样本采集、实验流程、研究方法均严格按照《上海海洋大学实验室动物伦理规范》和上海海洋大学伦理委员会制定的规章制度执行。
从铝箔纸中取出肠道,称重后,使用玻璃纤维滤膜(孔径2.7 μm,直径47 mm)过滤后的超纯水冲洗组织表面,记录湿质量后放入锥形瓶中。加入100 mL的KOH溶液(10%)进行消解,铝箔纸密封瓶口防止污染。锥形瓶置于水浴恒温振荡器中,温度设置为60 ℃,转速设置为110 r/min。待样品消解完全后,取出锥形瓶,消解液使用玻璃纤维滤膜真空抽滤,每张滤膜转移至干净的培养皿中暂存。
利用体视显微镜(SZX2-FOF,Olympus)对滤膜进行观察,结合颗粒的物理及形态特征,挑选疑似微塑料,记录形状。使用数码相机(U-TV0.63XC,Olympus)拍摄照片,并使用Image J软件测量粒径。使用傅里叶变换红外光谱仪(NICOLET iN10)对所有疑似颗粒进行成分分析,以确定化学成分。通过将扫描光谱与匹配度大于70%的样本进行比较,或根据光谱匹配标准人工判别。
由于微塑料在室内环境中无处不在,因此采取了适当的预防措施来避免实验室中的污染。每组实验中设置无组织样品的锥形瓶,加入等量的质量分数为10%的KOH溶液,与实际组织样品同时进行消化、过滤、观察和鉴定。空白不锈钢过滤膜放置在干净的培养皿中,靠近实验工作区。在鉴定聚合物成分时,根据形状、颜色和大小等特征,将与空白对照中颗粒类似的疑似颗粒排除。实验期间关闭门窗以减少空气流动造成的潜在污染,实验过程均在通风橱内操作完成。实验人员均穿着棉质实验服,戴丁晴手套,所有的容器和工具都尽可能用锡纸盖住。
本研究中闪光背灯鱼体长为10.60~11.90 cm,平均为(11.44 ± 0.32 )cm;加利福尼亚标灯鱼体长为11.00~11.90 cm,平均为(11.50 ± 0.22 )cm。Mann-Whitney U检验结果显示,两种灯笼鱼个体的体长无显著差异(P = 0.665)。闪光背灯鱼肠道质量为0.05~0.23 g(0.12 ± 0.05 g),加利福尼亚标灯鱼肠道质量为0.06~0.31g(0.15 ± 0.05 g),二者肠道质量存在显著差异(ANOVA,P = 0.011)。
显微镜观察共挑出110个疑似颗粒,其中经鉴定确认为微塑料的为60个。对于所有灯笼鱼类样本,检出率为58.33%,而加利福尼亚标灯鱼和闪光背灯鱼的检出率分别为53.33%和63.33%。加利福尼亚标灯鱼肠道中微塑料平均丰度为(0.83 ± 0.90)个/尾和(6.54 ± 8.33)个/g,闪光背灯鱼为(1.17 ± 1.27)个/尾和(11.33 ± 14.06)个/g(

图2 微塑料丰度小提琴图
Fig.2 Violin plots of the abundance of microplastics
箱线图包含最小值、四分位距、均值和最大值。
Standard boxplot contains minimum, interquartile range, mean and maximum values.
灯笼鱼体内发现的微塑料形状绝大多数为纤维状(n = 50,83.33%),其次为颗粒(n = 5,8.33%)和碎片(n = 5,8.33%),没有发现薄膜状微塑料。其中加利福尼亚标灯鱼肠道中检测出的微塑料纤维状占80.00%,其次是12.00%的碎片和8.00%的颗粒,而闪光背灯鱼肠道中85.70%为纤维状微塑料,碎片和颗粒状微塑料分别占5.70%和8.60%。检测出的所有微塑料粒径范围为106.46~4 812.16 μm,其中加利福尼亚标灯鱼体内微塑料粒径范围为107.78~4 812.16 μm[(1 010.26 ± 1 025.56) μm];而闪光背灯鱼为106.46~4 525.15 μm[(868.07 ± 841.75) μm]。根据形状划分,纤维状微塑料的粒径范围为144.62~4 812.16 μm[(1 073.45 ± 947.17) μm],而碎片和颗粒的粒径范围则要小得多,分别为107.79~489.32 μm[(259.57 ± 126.63) μm]和106.46~180.85 μm[(133.68 ± 30.88) μm,如

图3 肠道中微塑料粒径和形状组成
Fig.3 Size and shape distribution of microplastics in the intestines
对观察到的颗粒进行傅里叶变换红外光谱分析,共检测出11种化学成分,最常见的是赛璐玢(Cellophane,CP,38.33%)、聚对苯二甲酸乙二醇酯 (Polyethylene terephthalate,PET,33.33%)和聚丙烯酰胺(Polyacrylamide,PAM,10.00%),其他如丙烯酸酯共聚物(Acrylates copolymer,ACR)、乙烯-丙烯酸共聚物(Ethylene acrylic acid,EAA)、聚酰胺(Polyamide,PA)、聚丙烯晴(Polyacrylonitrile,PAN)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)、聚丙烯(Polypropylene,PP)、聚氨酯(Polyurethane,PU)等所占比例均低于5.00%。其中大部分PET和全部的CP集中在纤维状微塑料中,颗粒中主要为PP,碎片中主要为PU。两种灯笼鱼类之间观察到微塑料聚合物成分有较大的差异,加利福尼亚标灯鱼肠道内微塑料PET(36.00%)和PAM(24.00%)成分比较高,而CP(54.29%)和PET(31.43%)是闪光背灯鱼肠道内微塑料的主要化学成分。

图4 肠道微塑料特征冲积图
Fig.4 Alluvial diagram summarizing the characteristics of microplastics in the intestines
本研究表明,西北太平洋的灯笼鱼类已受到微塑料的污染。两种灯笼鱼肠道中的检出率达到58.30%,平均丰度为(1.00 ± 1.11)个/尾和(8.93 ± 11.80)个/g。与其他海洋中上层鱼类相比,灯笼鱼类的昼夜垂直洄游行为可能使其在较长时间里暴露于微塑料污染的三维水体环境中,进而摄入微塑
本研究中两种灯笼鱼类肠道内的微塑料主要为纤维状,这是海洋鱼类胃肠道中最常见的微塑料形
LUSHER
以往研
西北太平洋两种灯笼鱼类都表现出较高检出率的微塑料污染。误食、营养传递和栖息水层都可能影响灯笼鱼类的微塑料污染特征。尽管在本研究中两种灯笼鱼类肠道中微塑料的丰度、粒径和形状相似,但是聚合物组成存在种间差异。在评估微塑料对灯笼鱼类的生态效应时,应充分考虑不同聚合物微塑料的毒性差
参考文献
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. [百度学术]
LI W C, TSE H F, FOK L. Plastic waste in the marine environment: a review of sources, occurrence and effects[J]. Science of the Total Environment, 2016, 566-567: 333-349. [百度学术]
ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. [百度学术]
RAMU K, KAJIWARA N, ISOBE T, et al. Spatial distribution and accumulation of brominated flame retardants, polychlorinated biphenyls and organochlorine pesticides in blue mussels (Mytilus edulis) from coastal waters of Korea[J]. Environmental pollution, 2007, 148(2): 562-569. [百度学术]
CRUZ R, CUNHA S C, CASAL S. Brominated flame retardants and seafood safety: a review[J]. Environment International, 2015, 77: 116-131. [百度学术]
杨志刚, 张晨晨, 江青青, 等. 不同粒径微塑料对中华绒螯蟹幼蟹组织结构及肝胰腺抗氧化能力的影响[J]. 上海海洋大学学报, 2024, 33(3): 572-580. [百度学术]
YANG Z G, ZHANG C C, JIANG Q Q, et al. Toxic effects of different particle size polystyrene microbeads on juvenile Eriocheir sinensis[J]. Journal of Shanghai Ocean University, 2024, 33(3): 572-580. [百度学术]
HIRAI H, TAKADA H, OGATA Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. [百度学术]
MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2): 318-324. [百度学术]
AVIO C G, GORBI S, REGOLI F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea[J]. Marine Environmental Research, 2015, 111: 18-26. [百度学术]
PROUD R, HANDEGARD N O, KLOSER R J, et al. From siphonophores to deep scattering layers: uncertainty ranges for the estimation of global mesopelagic fish biomass[J]. ICES Journal of Marine Science, 2019, 76(3): 718-733. [百度学术]
鞠佳丽, 王小谷, 吴尘艳, 等. 南海北部海域夏季仔稚鱼种类组成和主要环境因子的关系[J]. 上海海洋大学学报, 2023, 32(1): 190-202. [百度学术]
JU J L, WANG X G, WU C Y, et al. The relationship between species composition of fish larvae and juveniles and main environment factors in the northern South China Sea in summer[J]. Journal of Shanghai Ocean University, 2023, 32(1): 190-202. [百度学术]
CATUL V, GAUNS M, KARUPPASAMY P K. A review on mesopelagic fishes belonging to family Myctophidae[J]. Reviews in Fish Biology and Fisheries, 2011, 21(3): 339-354. [百度学术]
SAUNDERS R A, COLLINS M A, FOSTER E, et al. The trophodynamics of Southern Ocean Electrona (Myctophidae) in the Scotia Sea[J]. Polar Biology, 2014, 37(6): 789-807. [百度学术]
STEINBERG D K, CARLSON C A, BATES N R, et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(1): 137-158. [百度学术]
HUDSON J M, STEINBERG D K, SUTTON T T, et al. Myctophid feeding ecology and carbon transport along the northern Mid-Atlantic Ridge[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 93: 104-116. [百度学术]
AL-MUTAIRI H, LANDRY M R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2001, 48(8/9): 2083-2103. [百度学术]
严利平, 李建生, 沈德刚, 等. 黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化[J]. 海洋渔业, 2006, 28(2): 117-123. [百度学术]
YAN L P, LI J S, SHEN D G, et al. Variations in diet composition and feeding intensity of small yellow croaker Larimichthys polyactis Bleeker in the southern Yellow Sea and northern East China Sea[J]. Marine Fisheries, 2006, 28(2): 117-123. [百度学术]
FERREIRA G V B, JUSTINO A K S, EDUARDO L N, et al. Influencing factors for microplastic intake in abundant deep-sea lanternfishes (Myctophidae)[J]. Science of the Total Environment, 2023, 867: 161478. [百度学术]
BOERGER C M, LATTIN G L, MOORE S L, et al. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre[J]. Marine Pollution Bulletin, 2010, 60(12): 2275-2278. [百度学术]
DAVISON P, ASCH R G. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre[J]. Marine Ecology Progress Series, 2011, 432: 173-180. [百度学术]
LUSHER A L, O'DONNELL C, OFFICER R, et al. Microplastic interactions with North Atlantic mesopelagic fish[J]. ICES Journal of Marine Science, 2016, 73(4): 1214-1225. [百度学术]
王良明. 西北太平洋游泳动物种类组成及主要优势种的生物学特征[D]. 厦门: 国家海洋局第三海洋研究所, 2017. [百度学术]
WANG L M. The composition of nekton and biological characteristic of main dominant species in northwestern Pacific Ocean[D]. Xiamen: Third Institute of Oceanography, State Oceanic Administration, 2017. [百度学术]
JUSTINO A K S, FERREIRA G V B, SCHMIDT N, et al. The role of mesopelagic fishes as microplastics vectors across the deep-sea layers from the Southwestern Tropical Atlantic[J]. Environmental Pollution, 2022, 300: 118988. [百度学术]
LI B W, LIANG W W H, LIU Q X, et al. Fish Ingest microplastics unintentionally[J]. Environmental Science & Technology, 2021, 55(15): 10471-10479. [百度学术]
ORY N C, GALLARDO C, LENZ M, et al. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish[J]. Environmental Pollution, 2018, 240: 566-573. [百度学术]
D'AVIGNON G, HSU S S H, GREGORY-EAVES I, et al. Feeding behavior and species interactions increase the bioavailability of microplastics to benthic food webs[J]. Science of the Total Environment, 2023, 896: 165261. [百度学术]
SETÄLÄ O, FLEMING-LEHTINEN V, LEHTINIEMI M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185: 77-83. [百度学术]
DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean[J]. Archives of environmental contamination and toxicology, 2015, 69(3): 320-330. [百度学术]
EDUARDO L N, BERTRAND A, MINCARONE M M, et al. Distribution, vertical migration, and trophic ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic[J]. Progress in Oceanography, 2021, 199: 102695. [百度学术]
WIECZOREK A M, MORRISON L, CROOT P L, et al. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic[J]. Frontiers in Marine Science, 2018, 5: 39. [百度学术]
MÜLLER C. Not as bad as it seems? a literature review on the case of microplastic uptake in fish[J]. Frontiers in Marine Science, 2021, 8: 672768. [百度学术]
DE FALCO F, DI PACE E, COCCA M, et al. The contribution of washing processes of synthetic clothes to microplastic pollution[J]. Scientific reports, 2019, 9(1): 6633. [百度学术]
XUE B M, ZHANG L L, LI R L, et al. Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment [J]. Environmental Science & Technology, 2020, 54(4): 2210-2217. [百度学术]
ACHARYA S, RUMI S S, HU Y, et al. Microfibers from synthetic textiles as a major source of microplastics in the environment: a review[J]. Textile Research Journal, 2021, 91(17/18): 2136-2156. [百度学术]
PAN Z, LIU Q L, SUN Y, et al. Environmental implications of microplastic pollution in the northwestern Pacific Ocean[J]. Marine Pollution Bulletin, 2019, 146: 215-224. [百度学术]
贡艺, 梁茜, 李云凯, 等. 西北太平洋桡足类稳定同位素特征及其影响因素[J]. 生态学杂志, 2024, 43(2): 505-513. [百度学术]
GONG Y, LIANG Q, LI Y K, et al. Stable isotope signatures and driving factors of copepods from the northwest Pacific Ocean[J]. Chinese Journal of Ecology, 2024, 43(2): 505-513. [百度学术]
YU X, HUANG W, WANG Y J, et al. Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: an area of intensive mariculture[J]. Water Research, 2022, 212: 118117. [百度学术]
PAN Z, GUO H G, CHEN H Z, et al. Microplastics in the northwestern Pacific: abundance, distribution, and characteristics[J]. Science of the Total Environment, 2019, 650: 1913-1922. [百度学术]
LIU K, COURTENE-JONES W, WANG X H, et al. Elucidating the vertical transport of microplastics in the water column: a review of sampling methodologies and distributions[J]. Water Research, 2020, 186: 116403. [百度学术]
ERYAŞAR A R, GEDIK K, MUTLU T. Ingestion of microplastics by commercial fish species from the southern Black Sea coast[J]. Marine Pollution Bulletin, 2022, 177: 113535. [百度学术]
LITHNER D, LARSSON Å, DAVE G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. [百度学术]