摘要
浮游植物群落动态变化及其与环境因子的关系是了解湖库水环境变动及开展水环境质量评价的重要依据。于2021—2022年对千岛湖浮游植物与水环境因子进行逐月调查,分析了浮游植物群落结构特征、时空分布格局及其主要环境驱动因子,旨在为了解千岛湖最新水环境变化和生态系统的演变提供重要的基础资料。结果显示:调查期间共鉴定出藻类8门240种,物种组成以绿藻门(51.67%)、硅藻门(21.67%)和蓝藻门(17.84%)为主,优势种以蓝藻和硅藻为主。2021—2022年均生物密度为(404.21±116.59)×1
作为水域生态系统的初级生产者,浮游植物种类和数量的变化不仅是对外来营养物输入的直接响应,还受到水体食物网下行效应的影响,同时也是水环境质量的良好指示,了解浮游植物的组成变化及其驱动因素是有效维护水生态系统健康稳定的重要科学依
千岛湖,原名新安江水库,位于浙江省杭州市淳安县,是一个以鲢鳙占优势的水库生态系统。近年来,不少学者对千岛湖浮游植物群落特征与环境因子的关系进行了研究,研究结果发现,水温、透明度、总氮等环境因子是影响浮游植物群落的关键因
基于千岛湖的动力学特征和水流方向在全湖设置11个采样点,根据空间特点,全湖分为西北湖区(S1、S2、S3)、西南湖区(S8、S9)、中心湖区(S4、S10)、东南湖区(S5、S6、S7)和东北湖区(S11),见

图1 千岛湖采样点位图
Fig.1 Sampling points map of Qiandao Lake
2021年11月至2022年10月,每月中旬在各采样点采集浮游植物样品和水质指标样品。其中,前7个点位分为6个水层,按0.5、4、8、12、16、20 m分层采集水样和浮游植物样品,后4个点位采集上(0.5、4、8 m)、下(12、16、20 m)两层混合样品。
使用10 L采水器在各样点采集1 L浮游植物样品,随后加入15 mL碘液,分液装置沉降48 h,收集后加入5 mL甲醛溶液。处理好的样品在光学显微镜下鉴定并计数。水温(WT)、溶解氧(DO)、pH等环境因子使用便携式多参数水质检测仪(YSI)现场测定,塞氏盘测定透明度(SD),BBE测定叶绿素a(Chl.a)。各采样点采集500 mL水样带回实验室进行水化学指标的测定,主要测定总氮(TN)、总磷(TP)、氨氮(NH3-N)、硝酸盐氮(NO
使用Shannon-Wiener多样性指数(H´)、Pielou均匀度指数(J)和Margalef丰富度指数(R)来分析浮游植物群落多样性,以优势度指数(Y)>0.02来判断优势
(1) |
(2) |
(3) |
(4) |
式中:ni为第i种藻类的细胞数量;N为藻类总细胞数量;S为样品的藻类物种数;fi为第i种藻类在各采样点出现的频率。通过Microsoft Excel 软件对原数据进行汇总分析与绘图,使用SPSS 25.0 软件对各季节和湖区的生物密度、生物量和多样性指数进行单因素方差分析,分析前进行正态检验,若不符合正态,则进行非参数秩和检验(Kruskal-Wallis 检验)。使用SPSS软件对藻类与环境因子进行Spearman相关性分析;使用CANOCO 5软件对藻类优势种与环境因子进行RDA分析,分析前对各类数据(除pH)进行lg(x+1)转换。
由
水环境因子 Environmental factors | 春季 Spring | 夏季 Summer | 秋季 Autumn | 冬季 Winter |
---|---|---|---|---|
水温 WT/℃ |
15.06±2.1 |
23.65±2.7 |
22.45±2.1 |
14.05±3.0 |
溶解氧 DO/(mg/L) |
9.94±0.8 |
6.52±1.3 |
6.15±1.1 |
8.83±0.8 |
pH |
9.09±0.3 |
8.60±0.7 |
7.72±0.0 |
7.98±0.2 |
透明度 SD/m |
4.30±1.1 |
3.21±0.4 |
4.50±0.4 |
6.13±0.9 |
总氮 TN/(mg/L) |
1.02±0.0 |
1.04±0.0 |
0.85±0.1 |
0.94±0.0 |
硝酸盐氮 NO |
0.78±0.0 |
0.68±0.1 |
0.46±0.3 |
0.70±0.0 |
氨氮 NH3-N/(mg/L) |
0.08±0.0 |
0.20±0.0 |
0.15±0.0 |
0.04±0.0 |
亚硝酸盐氮 NO |
0.014±0.00 |
0.012±0.00 |
0.006±0.00 |
0.007±0.00 |
高锰酸盐指数 CODMn/(mg/L) |
1.50±0.1 |
1.99±0.2 |
1.55±0.3 |
0.92±0.5 |
总磷 TP/(mg/L) |
0.020±0.00 |
0.034±0.01 |
0.024±0.00 |
0.016±0.00 |
叶绿素a Chl.a/(μg/L) |
3.81±1.0 |
4.87±1.2 |
4.25±1.5 |
1.46±0.0 |
注: 同行数据没有相同字母表示差异显著(P <0.05)。
Notes: Peer data without the same letter indicate significant difference(P <0.05).
2021至2022年共鉴定出浮游植物8门240种,其中,绿藻门124种(51.67%),硅藻门52种(21.67%),蓝藻门42种(17.84%),甲藻门4种(1.67%),裸藻门8种(3.33%),隐藻门6种(2.50%),金藻门2种(0.83%),黄藻门2种(0.83%)。
从季节上来看(

图2 千岛湖各季节浮游植物物种组成
Fig.2 Species composition of phytoplankton in different seasons of Qiandao Lake

图3 千岛湖各湖区浮游植物物种组成
Fig.3 Species composition of phytoplankton in each lake area of Qiandao Lake
各季节共检出浮游植物优势种17种(
优势种Dominant species | 冬季 Winter | 春季 Spring | 夏季 Summer | 秋季 Autumn | 编号 Code |
---|---|---|---|---|---|
蓝藻门 Cyanophyta | |||||
点状平裂藻 Merismopedia punctata | - | 0.032 | - | - | Cya1 |
湖泊鞘丝藻 Lyngbya limnetica | - | - | - | 0.053 | Cya2 |
束丝藻 Aphanizomenon sp. | - | - | 0.083 | 0.324 | Cya3 |
弯形尖头藻 Raphidiopsis curvata | - | - | 0.084 | 0.060 | Cya4 |
微小隐球藻 Aphanocapsa delicatissima | - | - | - | 0.080 | Cya5 |
假鱼腥藻 Pseudoanabaena sp. | 0.158 | 0.523 | 0.414 | 0.170 | Cya6 |
细鞘丝藻 Leptolyngbya sp. | - | - | 0.036 | 0.183 | Cya7 |
依沙束丝藻 Aphanizomenon issatschenkoi | - | - | 0.041 | 0.030 | Cya8 |
鱼腥藻 Anabeana sp. | 0.182 | 0.036 | 0.033 | - | Cya9 |
硅藻门 Bacillariophyta | |||||
短小曲壳藻 Achnanthes exigua | - | 0.093 | - | - | Bac1 |
颗粒沟链藻 Aulacoseira granulata | 0.155 | - | - | - | Bac2 |
颗粒沟链藻极狭变种 Aulacoseira granulata var. angustissima | 0.185 | - | - | - | Bac3 |
小环藻 Cyclotella sp. | - | 0.026 | - | - | Bac4 |
针杆藻 Synedra sp. | - | 0.048 | 0.036 | - | Bac5 |
直链藻 Melosira sp. | 0.065 | - | - | - | Bac6 |
绿藻门 Chlorophyta | |||||
双对栅藻 Scenedesmus bijuga | - | - | 0.023 | - | Chl1 |
狭形纤维藻 Ankistrodesmus angustus | - | 0.021 | - | - | Chl2 |
千岛湖浮游植物年均生物密度为(404.21±116.59)×1
如
季节 Season | 生物密度 Biological density /(×1 | 生物量 Biomass/(mg/L) | Shannon多样性指数 Shannon diversity index | Pielou均匀度指数 Pielou evenness index | Margalef丰富度指数 Margalef richness index |
---|---|---|---|---|---|
春季Spring |
206.63±74.9 |
0.64±0.1 |
1.67±0.0 |
0.63±0.0 |
3.49±0.1 |
夏季Summer |
592.88±127.1 |
1.54±0.3 |
2.06±0.1 |
0.65±0.0 |
4.09±0.2 |
秋季Autumn |
648.46±217.9 |
0.76±0.2 |
1.93±0.0 |
0.63±0.0 |
3.90±0.3 |
冬季Winter |
35.81±5.9 |
0.12±0.0 |
1.65±0.0 |
0.67±0.0 |
3.58±0.3 |
注: 同行数据没有相同字母表示差异显著(P<0.05)。
Notes: Peer data without the same letter indicate significant difference(P<0.05).
种类 Species | 生物密度Density/(×1 | 生物量Biomass/(mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
春季Spring | 夏季Summer | 秋季Autumn | 冬季Winter | 春季Spring | 夏季Summer | 秋季Autumn | 冬季Winter | |
蓝藻门Cyanophyta | 63.86 | 79.17 | 95.37 | 41.79 | 36.11 | 50.43 | 74.09 | 12.21 |
绿藻门Chlorophyta | 11.37 | 13.02 | 2.51 | 9.54 | 11.69 | 10.14 | 5.65 | 11.61 |
硅藻门Bacillariophyta | 24.17 | 7.49 | 1.98 | 48.14 | 46.20 | 36.70 | 17.51 | 71.39 |
金藻门Chrysophyta | 0.03 | 0 | 0.01 | 0.01 | 0.11 | 0 | 0.01 | 0 |
甲藻门Pyrrophyta | 0.33 | 0.07 | 0.09 | 0.22 | 4.81 | 1.63 | 2.53 | 4.18 |
裸藻门Euglenophyta | 0.04 | 0.08 | 0.01 | 0.04 | 0.48 | 0.42 | 0.09 | 0.30 |
隐藻门Cryptophyta | 0.20 | 0.02 | 0.03 | 0.20 | 0.59 | 0.02 | 0.12 | 0.31 |
黄藻门Xanthophyta | 0 | 0.14 | 0 | 0 | 0 | 0.66 | 0 | 0 |
从不同湖区来看(

图4 千岛湖各湖区浮游植物生物密度和生物量
Fig.4 Biological density and biomass of phytoplankton in each lake area of Qiandao Lake
Shannon多样性指数年均值为1.83±0.07,在季节间存在显著差异(F=6.184,df=3,P=0.005),湖区间无显著差异(F=0.263,df=4,P=0.897)。Shannon多样性指数夏、秋季显著高于春、冬季(
相关性分析显示:浮游植物生物密度和生物量与WT、NH3-N及CODMn呈显著正相关;生物密度与DO、SD、ORP呈显著负相关,生物量与SD、SPC呈显著负相关。Shannon多样性指数与WT、NH3-N呈显著正相关,与DO呈显著负相关;均匀度指数与SD呈显著正相关;丰富度指数与环境因子无显著相关性;浮游植物各群落参数与TP无显著相关性(
水环境因子 Environmental factors | 生物密度Biological Density | 生物量 Biomass | Shannon多样性指数 Shannon diversity index | Pielou均匀度指数 Pielou evenness index | Margalef丰富度指数 Margalef richness index |
---|---|---|---|---|---|
水温 WT |
0.88 |
0.79 |
0.72 | -0.259 | 0.308 |
溶解氧 DO |
-0.72 | -0.508 |
-0.60 | 0.049 | -0.140 |
透明度 SD |
-0.69 |
-0.81 | -0.538 |
0.58 | -0.427 |
氧化还原电位ORP |
-0.67 | -0.563 | -0.336 | 0.434 | 0.063 |
电导率SPC | -0.458 |
-0.60 | -0.098 | 0.203 | 0.308 |
氨氮NH3-N |
0.76 |
0.76 |
0.64 | -0.378 | 0.315 |
总磷 TP | 0.235 | 0.307 | 0.407 | -0.327 | 0.248 |
高锰酸盐指数CODMn |
0.82 |
0.95 | 0.497 | -0.559 | 0.252 |
注: ∗ 表示P<0.05,差异显著;∗∗ 表示P<0.01,差异极显著。
Notes: ∗ indicates significant difference(P<0.05); ∗∗ indicates highly significant difference(P<0.01).
对千岛湖17种浮游植物优势种进行去趋势对应分析(DCA),结果显示排序轴最大长度小于3,因此使用RDA分析。在RDA排序轴中,轴一和轴二的特征值分别为0.621 8和0.174 2,前两轴共解释了物种与环境之间80.65%的相关性。WT、NH3-N和NO

图5 浮游植物优势种与环境因子的RDA图
Fig.5 RDA diagram of dominant species of phytoplankton and environment factors
本研究共监测到浮游植物8门240种,主要由绿藻、硅藻和蓝藻组成,共占总种类数的91.18%,上述结果与历史研究基本一
从全年生物量上来看,蓝藻门贡献率最高,其次是硅藻门和绿藻门,这与胡忠军
藻类群落结构与环境因子间存在密切的联系。RDA结果显示WT、NH3-N和NO
本次调查共鉴定出浮游植物8门240种,种类由绿藻、硅藻和蓝藻组成,优势种呈现出蓝-硅藻型。浮游植物群落存在明显的时空差异,从季节上看,夏秋两季的物种数、密度、生物量和Shannon 多样性指数均高于其他季节;从空间上来看,西北湖区的物种数、密度和生物量均高于其他湖区。Spearman相关分析表明,浮游植物现存量与WT、NH3-N及CODMn呈显著正相关,与SD呈显著负相关。RDA分析表明,影响千岛湖浮游植物优势种群落分布的主要环境因子是WT、NH3-N和NO
参考文献
段萍萍, 陈明帅, 宋宁宁, 等. 东平湖与大汶河浮游植物群落结构季节变化及水质评价[J]. 水产学杂志, 2023, 36(4): 89-98. [百度学术]
DUAN P P, CHEN M S, SONG N N, et al. Seasonal variation in phytoplankton community structure and water quality evaluation in Dongping Lake and Dawen River[J]. Chinese Journal of Fisheries, 2023, 36(4): 89-98. [百度学术]
吴转璋, 朱超, 唐萍, 等. 巢湖湖区浮游植物群落与水质因子相关性分析[J]. 生物学杂志, 2023, 40(1): 79-84. [百度学术]
WU Z Z, ZHU C, TANG P, et al. Correlation analysis of phytoplankton community and water quality factors in Chaohu Lake[J]. Journal of Biology, 2023, 40(1): 79-84. [百度学术]
GARCÍA-RODRÍGUEZ J, MOLINA-ASTUDILLO F I, MIRANDA-ESPINOZA E, et al. Seasonal phytoplanktonic variation in an urban lake from Cuernavaca, Morelos, Mexico[J]. Acta Universitaria, 2015, 25(1): 3-11. [百度学术]
ASATRYAN V, STEPANYAN L, HOVSEPYAN A, et al. The dynamics of phytoplankton seasonal development and its horizontal distribution in Lake Sevan (Armenia)[J]. Environmental Monitoring and Assessment, 2022, 194(10): 757. [百度学术]
高海鹏, 孙兴, 张昆, 等. 2020年春夏季青海湖浮游植物群落结构及其影响因子[J]. 淡水渔业, 2023, 53(4): 44-53. [百度学术]
GAO H P, SUN X, ZHANG K, et al. Community structure of phytoplankton and environmental impact factors in Qinghai Lake during spring and summer in 2020[J]. Freshwater Fisheries, 2023, 53(4): 44-53. [百度学术]
王尽文, 黄娟, 姜万钧, 等. 日照近岸海域冬夏季网采浮游植物群落结构及其与环境因子的关系[J]. 上海海洋大学学报, 2022, 31(1): 86-96. [百度学术]
WANG J W, HUANG J, JIANG W J, et al. Features of Net-phytoplankton communites and their environmental factors in the coastal waters of Rizhao in winter and summer[J]. Journal of Shanghai Ocean University, 2022, 31(1): 86-96. [百度学术]
APRIADI T, MELANI W R, ZULFIKAR A, et al. Phytoplankton community dynamics in Sei Gesek Reservoir, Bintan Island[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1260(1): 012010. [百度学术]
FIRSOVA A, GALACHYANTS Y, BESSUDOVA A, et al. Environmental factors affecting distribution and diversity of phytoplankton in the Irkutsk reservoir ecosystem in June 2023[J]. Diversity, 2023, 15(10): 1070. [百度学术]
丰叶, 王俊, 吴博文, 等. 固城湖浮游植物群落结构季节变化及其环境影响因子[J]. 生态与农村环境学报, 2023, 39(8): 1042-1050. [百度学术]
FENG Y, WANG J, WU B W, et al. Seasonal variation characteristics of phytoplankton community in Gucheng Lake and the influential environmental factors[J]. Journal of Ecology and Rural Environment, 2023, 39(8): 1042-1050. [百度学术]
胡忠军, 莫丹玫, 周小玉, 等. 千岛湖浮游植物群落结构时空分布及其与环境因子的关系[J]. 水生态学杂志, 2017, 38(5): 46-54. [百度学术]
HU Z J, MO D M, ZHOU X Y, et al. Spatial and seasonal distribution of phytoplankton in Qiandao Lake and relationship with environmental factors[J]. Journal of Hydroecology, 2017, 38(5): 46-54. [百度学术]
莫丹玫. 千岛湖浮游植物群落结构多样性及其鉴定方法的研究[D]. 上海: 上海海洋大学, 2016. [百度学术]
MO D M. Community structures of phytoplankton and comparison on them between two identification methods in Lake Qiandaohu[D]. Shanghai: Shanghai Ocean University, 2016. [百度学术]
张真, 胡忠军, 史先鹤, 等. 千岛湖浮游植物群落结构及功能群的划分[J]. 上海海洋大学学报, 2019, 28(1): 37-48. [百度学术]
ZHANG Z, HU Z J, SHI X H, et al. Community structures and functional groups of phytoplankton in Qiandao Lake[J]. Journal of Shanghai Ocean University, 2019, 28(1): 37-48. [百度学术]
王吉毅. 千岛湖浮游植物群落结构时空分布格局与营养盐的相关性[D]. 哈尔滨: 哈尔滨师范大学, 2022. [百度学术]
WANG J Y. Correlation between spatial and temporal distribution pattern of phytoplankton community structure and nutrients in Qiandao Lake[D]. Harbin: Harbin Normal University, 2022. [百度学术]
ZULKARNAIN D A, SARI L A, SARI P D W, et al. Monitoring the distribution of phytoplankton in vannamei shrimp cultivation in intensive system, Banyuwangi, East Java, Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1273(1): 012041. [百度学术]
苏新然, 于潘, 尤庆敏, 等. 三峡库区浮游植物群落结构特征及水生态评价[J]. 湖泊科学, 2023, 35(2): 493-506. [百度学术]
SU X R, YU P, YOU Q M, et al. Phytoplankton community structure and water ecological assessment in the Three Gorges Reservoir[J]. Journal of Lake Sciences, 2023, 35(2): 493-506. [百度学术]
秦娇娇, 王艳. 浮游植物多样性指数的应用及评价[J]. 沈阳师范大学学报(自然科学版), 2014, 32(4): 502-505. [百度学术]
QIN J J, WANG Y. Application and evaluation of phytoplankton diversity indexes[J]. Journal of Shenyang Normal University (Natural Science Edition), 2014, 32(4): 502-505. [百度学术]
周小玉. 千岛湖浮游藻类演替格局与环境因子的关系及其机理的初探[D]. 上海: 上海海洋大学, 2012. [百度学术]
ZHOU X Y. The planktonic algae succession in relation to environmental factors of Lake Qiandaohu and the influence mechanism[D]. Shanghai: Shanghai Ocean University, 2012. [百度学术]
VÖRÖS L, OLDAL I, PRÉSING M, et al. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp[J]. Hydrobiologia, 1997, 342: 223-228. [百度学术]
王丽卿, 许莉, 陈庆江, 等. 鲢鳙放养水平对淀山湖浮游植物群落影响的围隔实验[J]. 环境工程学报, 2011, 5(8): 1790-1794. [百度学术]
WANG L Q, XU L, CHEN Q J, et al. Stocking level effects of silver and bighead carps on the phytoplankton community in enclosures in Dianshan Lake[J]. Chinese Journal of Environmental Engineering, 2011, 5(8): 1790-1794. [百度学术]
王嵩, 王启山, 张丽彬, 等. 水库大型围隔放养鲢鱼、鳙鱼控藻的研究[J]. 中国环境科学, 2009, 29(11): 1190-1195. [百度学术]
WANG S, WANG Q S, ZHANG L B, et al. Large enclosures experimental study on algal control by silver carp and bighead[J]. China Environmental Science, 2009, 29(11): 1190-1195. [百度学术]
苏玉萍, 李赫龙, 张玉珍, 等. 山仔水库不同季节围隔放鱼控藻效果研究[J]. 福建师范大学学报(自然科学版), 2016, 32(4): 47-55. [百度学术]
SU Y P, LI H L, ZHANG Y Z, et al. Research on the effects of algae controlling by mesocosm stocking fish in different seasons at Shanzi Reservoir[J]. Journal of Fujian Normal University (Natural Science Edition), 2016, 32(4): 47-55. [百度学术]
徐凤洁, 俞秋佳, 王昊彬, 等. 淀山湖夏秋季浮游植物优势种生态特征分析[J]. 华东师范大学学报(自然科学版), 2014(6): 90-100, 120. [百度学术]
XU F J, YU Q J, WANG H B, et al. Ecological characteristics analysis of phytoplankton’s dominant species in summer and autumn in the Dianshan Lake, China[J]. Journal of East China Normal University (Natural Science), 2014(6): 90-100, 120. [百度学术]
吉正元, 刘绍俊. 抚仙湖浮游植物群落结构、影响因子及水质评价[J]. 中国环境监测, 2019, 35(4): 67-77. [百度学术]
JI Z Y, LIU S J. Phytoplankton community structure, related influencing factors and the evaluation of water quality in the Fuxian Lake[J]. Environmental Monitoring in China, 2019, 35(4): 67-77. [百度学术]
肖玉娜, 程靖华, 莫晓聪, 等. 丹江口水库浮游植物群落时空变化及其与环境因子的关系[J]. 湖泊科学, 2023, 35(3): 821-832. [百度学术]
XIAO Y N, CHENG J H, MO X C, et al. Spatio-temporal variation of phytoplankton community and its relationship with environmental factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2023, 35(3): 821-832. [百度学术]
林秋奇, 胡韧, 韩博平. 流溪河水库水动力学对营养盐和浮游植物分布的影响[J]. 生态学报, 2003, 23(11): 2278-2284. [百度学术]
LIN Q Q, HU R, HAN B P. Effect of hydrodynamics on nutrient and phytoplankton distribution in Liuxihe Reservoir[J]. Acta Ecologica Sinica, 2003, 23(11): 2278-2284. [百度学术]
李强, 伦凤霞, 葛婷婷. 淀山湖浮游植物群落结构特征及水生态健康评价[J]. 水生态学杂志, 2024, 45(2): 10-19. [百度学术]
LI Q, LUN F X, GE T T. Phytoplankton community structure characteristics and ecological health assessment of Dianshan Lake[J]. Journal of Hydroecology, 2024, 45(2): 10-19. [百度学术]
高亚, 潘继征, 李勇, 等. 江苏滆湖北部区整治后浮游植物时空分布及环境因子变化规律[J]. 湖泊科学, 2015, 27(4): 649-656. [百度学术]
GAO Y, PAN J Z, LI Y, et al. Spatio-temporal distribution of phytoplankton and environmental factors in the north part of Lake Gehu (Jiangsu) after muti-treatment[J]. Journal of Lake Sciences, 2015, 27(4): 649-656. [百度学术]
彭梦, 黄城晨, 李立杰, 等. 长湖浮游植物优势种生态位特征及种间联结性分析[J]. 生态学报, 2024, 44(4): 1549-1563. [百度学术]
PENG M, HUANG C C, LI L J, et al. Niche characteristics and interspecific association of dominant phytoplankton species in Lake Changhu[J]. Acta Ecologica Sinica, 2024, 44(4): 1549-1563. [百度学术]
陈玉茹, 刘佳睿, 郑文婷, 等. 浮游植物优势属演替和丝状蓝藻增殖的驱动因子研究——以千岛湖为例[J]. 水生生物学报, 2023, 47(12): 1877-1888. [百度学术]
CHEN Y R, LIU J R, ZHENG W T, et al. The driving forces for dominant genus succession of phytoplankton and proliferation of filamentous cyanobacteria: a case study of Qiandaohu reservoir[J]. Acta Hydrobiologica Sinica, 2023, 47(12): 1877-1888. [百度学术]
许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响[J]. 湖泊科学, 2019, 31(5): 1239-1247. [百度学术]
XU H, CHEN J, ZHU G W, et al. Effect of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria[J]. Journal of Lake Sciences, 2019, 31(5): 1239-1247. [百度学术]
李兴月, 刘禹, 张生, 等. 达里诺尔湖浮游植物群落结构的时空变化及其影响因素[J]. 湿地科学, 2023, 21(6): 897-906. [百度学术]
LI X Y, LIU Y, ZHANG S, et al. Spatiotemporal variation of phytoplankton community structure and its influencing factors in the Dalinor Lake[J]. Wetland Science, 2023, 21(6): 897-906. [百度学术]
RIGOSI A, CAREY C C, IBELINGS B W, et al. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa[J]. Limnology and Oceanography, 2014, 59(1): 99-114. [百度学术]
PULSIFER J, LAWS E. Temperature dependence of freshwater phytoplankton growth rates and zooplankton grazing rates[J]. Water, 2021, 13(11): 1591. [百度学术]
周琼, 苟金明, 邱小琮, 等. 黄河干流宁夏段浮游植物群落结构及其影响因子研究[J]. 环境污染与防治, 2022, 44(10): 1362-1367. [百度学术]
ZHOU Q, GOU J M, QIU X C, et al. Phytoplankton community structure and its influencing factors in Ningxia section of Yellow River mainstream[J]. Environmental Pollution & Control, 2022, 44(10): 1362-1367. [百度学术]
邓恺芊, 顾太波, 肖晶, 等. 贵州省3座不同营养型水库浮游植物群落时空格局及影响因子[J/OL]. 水生态学杂志: 1-13[2024-05-13]. https://doi.org/10.15928/j.1674-3075.202310300301. [百度学术]
DENG K Q, GU T B, XIAO J, et al. Spatio-temporal patterns and influencing factors of phytoplankton communities in three reservoirs with different nutritionanl status in Guizhou[J/OL]. Journal of Hydroecology: 1-13[2024-05-13]. https://doi.org/10.15928/j.1674-3075.202310300301. [百度学术]
王文婷, 李丰, 徐赛赛, 等. 上海青草沙水库浮游植物功能群时空变化特征及其影响因子[J]. 上海海洋大学学报, 2023, 32(6): 1224-1236. [百度学术]
WANG W T, LI F, XU S S, et al. Spatiotemporal variation of phytoplankton communities and their relationship with environmental factors in Shanghai Qingcaosha Reservoir[J]. Journal of Shanghai Ocean University, 2023, 32(6): 1224-1236. [百度学术]
李锋. 二滩水库浮游植物群落结构与水环境因子时空变化及其相关性研究[D]. 重庆: 西南大学, 2021. [百度学术]
LI F. Study on the spatiotemporal variation and correlation of factors and phytoplankton community structure and water environmental factors in Ertan Reservoir[D]. Chongqing: Southwest University, 2021. [百度学术]
张琦, 陈宇琛, 林育青, 等. 澜沧江梯级水库浮游植物群落结构特征及其关键驱动因子[J]. 湖泊科学, 2023, 35(2): 530-539. [百度学术]
ZHANG Q, CHEN Y C, LIN Y Q, et al. Characteristic of phytoplankton community structure and its driving factors along the cascade reservoirs in the Lancang River[J]. Journal of Lake Sciences, 2023, 35(2): 530-539. [百度学术]
刘晓曦, 陈丽, 蒋伊能, 等. 抚仙湖浮游植物群落时空变化特征及其与环境因子的关系[J]. 湖泊科学, 2020, 32(3): 793-803. [百度学术]
LIU X X, CHEN L, JIANG Y N, et al. Spatiotemporal variation of phytoplankton communities and their relationship with environmental factors in Lake Fuxian[J]. Journal of Lake Sciences, 2020, 32(3): 793-803. [百度学术]
邓文博. 西凉湖鱼类群落结构及食物网特征[D]. 武汉: 华中农业大学, 2023. [百度学术]
DENG W B. Fish community structure and food web characteristics of Xiliang Lake[D]. Wuhan: Huazhong Agricultural University, 2023. [百度学术]
ETISA D, KIFLE D, FETAHI T. Phytoplankton functional dynamics in relation to some physicochemical parameters in Lake Kuriftu (Oromia, Ethiopia)[J]. Algal Research, 2024, 79: 103462. [百度学术]