摘要
浙江南部近海是我国重要的渔场水域,银姑鱼是该海域中常见的经济鱼类。研究针对浙江南部近海的银姑鱼栖息环境进行探究,以期揭示其个体发育过程中的环境变化史。实验基于该海域的银姑鱼耳石样品展开,并运用ICP-MS技术测定耳石微结构的Sr、Ca等元素。通过分析Sr/Ca比值,发现银姑鱼的栖息环境变动范围为3.39×1
耳石是硬骨鱼体内的钙碳酸盐岩结构体,不仅具有听觉和维持平衡的作用,还能提供鱼类个体一生所在栖息地的生境信
浙江南部近海受沿岸上升流、台湾暖流及黑潮暖流的影响,水域内的营养盐和饵料生物丰富,为鱼类提供了良好的繁殖和育肥场
对银姑鱼的洄游、生活史等生物学研究多集中在早期,近年来对东海银姑鱼的研究甚少,在银姑鱼资源量明显下降的形势下,重建银姑鱼生境履历,可以建立起完善的生境“地图”,再根据“地图”上每片水域的生态条件,制定相应的养护管理措施,能有效地帮助其资源的养护和可持续发展。因此,本研究通过对银姑鱼耳石的微量元素进行分析,尝试探究银姑鱼在个体发育过程中所处栖息环境的盐度变化履历,旨在为银姑鱼洄游路径研究提供较为可行和准确的方法和途径。
实验所用样本均采自浙江南部近海,调查网具为底拖网,采样时间为2019年8月和11月,具体调查站位如

图1 浙江南部近海调查站位
Fig.1 Survey stations in the offshore waters of Southern Zhejiang
在元素分析前,耳石均经过超声波清洗除污、干燥、环氧树脂包埋固定风干后沿短轴切割、双面研磨,制作成耳石核区充分暴露、厚度500 μm左右的切片,置于光学显微镜 (OlympusCX23)下,拍照系统自带显微图像分析处理软件 (FCSnap) 测量耳石轮径和半径 (精确到0.01 mm )。使用GeoLas HD激光剥蚀系统利用193 nm 准分子激光在耳石样品沿耳石切片的腹缘轴线从核心至边缘每隔60 μm连续打点(剥蚀点位置与年龄读取的轴方位一致),选这条轴线是因为它可以通过耳石微结构分析清晰地辨别对应个体洄游过程中各不同生活史阶段的耳石区

图版 银姑鱼矢耳石激光剥蚀点位置
Plate Laser ablating positions of sagittaeotolith of P. argentat
1. 幼鱼耳石磨片打点示意图;2.成鱼耳石磨片打点示意图。
1. Sampling points of otolith grinding template of juvenile;2.Sampling points of otolith grinding template of adult.
考虑采样站点、体长和年龄等指标,选取已进行激光剥蚀取样的11个银姑鱼样本 (1~4龄) 矢耳石的Sr/Ca比值数据进行分析,样品信息见
编号 Code | 年龄 Age/y | 性别 Sex | 体长 Length/mm | 体质量 Body mass/g |
---|---|---|---|---|
1 | 1 | 雌性 | 129 | 50.2 |
2 | 1 | 雌性 | 116 | 36.8 |
3 | 1 | 雌性 | 137 | 54.0 |
4 | 2 | 雌性 | 145 | 73.1 |
5 | 2 | 雄性 | 159 | 87.6 |
6 | 2 | 雄性 | 158 | 77.8 |
7 | 3 | 雄性 | 174 | 123.9 |
8 | 3 | 雄性 | 154 | 77.8 |
9 | 3 | 雌性 | 160 | 89.9 |
10 | 4 | 雌性 | 200 | 185.9 |
11 | 4 | 雄性 | 186 | 144.9 |
由于耳石中Sr的含量受环境影响大而Ca含量波动幅度小,按国际惯例,将Sr浓度标准化为Sr:Ca×1
浙江南部近海银姑鱼耳石核心至边缘的Sr/Ca比值波动:总体上看最小值为3.99×1

图2 银姑鱼耳石核心到边缘的Sr/Ca比值变化和格局变化
Fig.2 Sr/Ca ratio changes and pattern changes from the core to the edge of otolith of P.argentata
样本编号 Sample | 年龄 Age | 核心区Sr/Ca比值 Sr/Ca ratio of the core | Sr/Ca比值变化阶段 Change phase of Sr/Ca ratio | 耳石径长 Distance from the core/μm | Sr/Ca×1 |
---|---|---|---|---|---|
NO.1 | 1 | 5.99 |
| 0~480 | 5.88±0.34 |
| 480~1 080 | 5.02±0.33 | |||
NO.2 | 1 | 7.83 |
| 0~480 | 6.46±0.60 |
| 480~1 140 | 5.31±0.51 | |||
NO.3 | 1 | 5.88 | 1 | 0~1 260 | 5.65±0.52 |
NO.4 | 2 | 5.57 |
| 0~480 | 5.58±0.15 |
| 480~1 080 | 5.07±0.18 | |||
| 1 080~1 260 | 5.44±0.21 | |||
NO.5 | 2 | 4.98 |
| 0~480 | 5.71±0.59 |
| 480~1 320 | 4.64±0.49 | |||
NO.6 | 2 | 4.97 |
| 0~360 | 5.73±0.38 |
| 360~960 | 5.17±0.21 | |||
| 960~1 380 | 6.29±0.43 | |||
NO.7 | 3 | 5.79 |
| 0~780 | 5.98±0.22 |
| 780~1 320 | 5.40±0.37 | |||
NO.8 | 3 | 4.58 |
| 0~900 | 4.43±0.28 |
| 900~1 220 | 6.38±0.74 | |||
NO.9 | 3 | 4.89 |
| 0~540 | 5.07±0.40 |
| 540~1 380 | 6.31±0.76 | |||
NO.10 | 4 | 6.03 |
| 0~1 200 | 5.73±0.29 |
| 1 200~1 740 | 5.55±0.64 | |||
NO.11 | 4 | 5.91 |
| 0~420 | 5.59±0.23 |
| 420~1 500 | 4.59±0.25 |
注: 同一样本中上标字母相同,表示不同阶段差异不显著(P>0.05),字母不同代表差异显著(P<0.05)。
Notes: Phases in one otolith sample having the same letter indicate insignificant differences (P>0.05); whereas different letters indicate significant differences (P<0.05).
NO.1、NO.2、NO.5、 NO.7和NO.11分为2个阶段,第1阶段分别为从耳石核心至480、480、480、780、420 μm的区域,Sr / Ca比值最高;第2阶段为上述距离至边缘的区域,Sr/Ca比值显著低于第 1 阶段(P<0.05)。NO.4分为3个阶段,第1阶段耳石核心至480 μm区域,Sr / Ca比值最高;第2阶段在480~1 080 μm区域,比值最低;第3阶段为1 080 μm至边缘区域,Sr / Ca比值高于第2阶段,略低于第1阶段,且与第1阶段差异性不显著 (P>0.05) 。
已有研
水体盐度与鱼类耳石中Sr/Ca比值与淡水、咸淡水、海水盐度呈相关关系,可以通过对耳石中Sr/Ca比值的分析来反演研究鱼类个体在不同盐度的水域动态变

图3 浙江南部近海银姑鱼生境履历模式(红色三角形所在区域为孵化区域)
Fig.3 Life history patterns of P. argentata from the offshore waters of southern Zhejiang (the red triangular area means the incubation area)
在11尾样品中,NO.2的Sr/Ca比值变化最为特殊,仅核心区Sr/Ca>7,其他区域再无经历海水生境的迹象,由
对2019年夏、秋两季所有航次,所有采样站点的盐度进行平均可知,夏季平均盐度为33.26±0.96,秋季平均盐度为31.6±1.37,表明采样站点都在咸淡水水域。根据以上个体Sr/Ca比值变化分析,本实验调查海域的银姑鱼Sr/Ca比值为3.39×1
参考文献
TANNER S E, PÉREZ M, PRESA P, et al. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius)[J]. Estuarine, Coastal and Shelf Science, 2014, 142: 68-75. [百度学术]
TEICHERT N, TABOURET H, LAGARDE R, et al. Site fidelity and movements of an amphidromous goby revealed by otolith multi‐elemental signatures along a tropical watershed[J]. Ecology of Freshwater Fish, 2018, 27(3): 834-846. [百度学术]
RIDZUAN D S, RAWI C S, HAMID S A, et al. Determination of food sources and trophic position in Malaysian tropical highland streams using carbon and nitrogen stable isotopes[J]. Acta Ecologica Sinica, 2017, 37(2): 97-104. [百度学术]
许庆, 姜涛, 杨健, 等. 基于耳石微化学分析的福建水域刀鲚生境履历研究[J]. 渔业科学进展, 2023, 44(6): 116-123. [百度学术]
XU Q, JIANG T, YANG J, et al. Habitat history of Coilia nasus in Fujian waters based on otolith microchemical analysis[J]. Progress in Fishery Sciences, 2023, 44(6): 116-123. [百度学术]
YANG J, ARAI T, LIU H, et al. Reconstructing habitat use of Coilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coilia ectenes of Taihu Lake, based on otolith strontium and calcium[J]. Journal of Fish Biology, 2006, 69(4): 1120-1135. [百度学术]
JIANG T, YANG J, LIU H B, et al. Life history of Coilia nasus from the Yellow Sea inferred from otolith Sr:Ca ratios[J]. Environmental Biology of Fishes, 2012, 95(4): 503-508. [百度学术]
杨琴, 赵峰, 宋超, 等. 长江口及邻近海域凤鲚生境履历重建[J]. 中国水产科学, 2019, 26(6): 1175-1184. [百度学术]
YANG Q, ZHAO F, SONG C, et al. Habitat history reconstruction of Coilia mystus from the Yangtze River Estuary and its adjacent sea area[J]. Journal of Fishery Sciences of China, 2019, 26(6): 1175-1184. [百度学术]
WALTHER B D, LIMBURG K E. The use of otolith chemistry to characterize diadromous migrations[J]. Journal of Fish Biology, 2012, 81(2): 796-825. [百度学术]
高春霞, 麻秋云, 田思泉, 等. 浙江南部近海小黄鱼生长、死亡和单位补充量渔获量[J]. 中国水产科学, 2019, 26(5): 925-937. [百度学术]
GAO C X, MA Q Y, TIAN S Q, et al. Growth, mortality and yield per recruitment of small yellow croaker in offshore waters of southern Zhejiang[J]. Journal of Fishery Sciences of China, 2019, 26(5): 925-937. [百度学术]
SUN D Q, XU T J, WANG R X. Characterization of microsatellites in white croaker (Pennahia argentata) through cross species amplification of Miichthys miiuy[J]. Journal of Genetics, 2013, 92(2): 110-113. [百度学术]
张洪亮, 宋之琦, 潘国良, 等. 浙江南部近海春季鱼类多样性分析[J]. 海洋与湖沼, 2013, 44(1): 126-134. [百度学术]
ZHANG H L, SONG Z Q, PAN G L, et al. Diversity analysis of fish in the coastal area of Zhejiang during spring[J]. Oceanologia et Limnologia Sinica, 2013, 44(1): 126-134. [百度学术]
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴-2021[M]. 北京: 中国农业出版社, 2021: 41. [百度学术]
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2021: 41. [百度学术]
马超, 沈长春, 庄之栋, 等. 闽南-台湾浅滩白姑鱼渔业生物学特性研究[J]. 渔业研究, 2019, 41(1): 34-41. [百度学术]
MA C, SHEN C C, ZHUANG Z D, et al. Study on fishery biological characteristics of Argyrosomus argentatus in Minnan - Taiwan Bank Fishing Ground[J]. Journal of Fisheries Research, 2019, 41(1): 34-41. [百度学术]
JEON B S, CHOI J H, KIM D N, et al. Age and growth of white croaker Pennahia argentata in the southern sea of Korea by otolith analysis[J]. Korean Journal of Fisheries and Aquatic Sciences, 2021, 54(1): 53-63. [百度学术]
FOWLER A J, HAMER P A, KEMP J. Age-related otolith chemistry profiles help resolve demographics and meta-population structure of a widely-dispersed, coastal fishery species[J]. Fisheries Research, 2017, 189: 77-94. [百度学术]
卢明杰, 刘洪波, 姜涛, 等. 大辽河口红狼牙鰕虎鱼耳石微化学的初步研究[J]. 海洋渔业, 2015, 37(4): 310-317. [百度学术]
LU M J, LIU H B, JIANG T, et al. Preliminary investigations on otolith microchemistry of Odontamblyopus rubicundus in the Daliao River Estuary, China[J]. Marine Fisheries, 2015, 37(4): 310-317. [百度学术]
IZZO C, REIS-SANTOS P, GILLANDERS BM. Otolith chemistry does not just reflect environmental conditions: A meta‐analytic evaluation[J]. Fish and Fisheries, 2018, 19(3): 441-454. [百度学术]
TIAN H L, LIU J H, CAO L, et al. Interactive effects of strontium and barium water concentration on otolith in corporation in juvenile flounder Paralichthys olivaceus[J]. PLoS ONE, 2019, 14(6): e0218446. [百度学术]
陈佳杰, 徐兆礼. 东黄渤海白姑鱼(Argyrosomus argentatus)渔场空间格局的研究[J]. 自然资源学报, 2011, 26(4): 666-673. [百度学术]
CHEN J J, XU Z L. Spatial-temporal pattern to fishing ground of white croaker in Bohai, Yellow and East China Seas[J]. Journal of Natural Resources, 2011, 26(4): 666-673. [百度学术]
黄慧娴, 李建华, 麻秋云, 等. 浙江南部近海银姑鱼的年龄与生长[J]. 上海海洋大学学报, 2022, 31(3): 739-748. [百度学术]
HUANG H X, LI J H, MA Q Y, et al. Age and growth of Pennahia argentata in the offshore waters of southern Zhejiang[J]. Journal of Shanghai Ocean University, 2022, 31(3): 739-748. [百度学术]
熊瑛, 刘洪波, 刘培廷, 等. 基于耳石元素微化学的江苏吕泗近岸小黄鱼生境履历重建[J]. 应用生态学报, 2014, 25(3): 836-842. [百度学术]
XIONG Y, LIU H B, LIU P T, et al. Reconstructing habitat history of Larimichthys polyactis in Lüsi coastal waters of Jiangsu Province, China based on otolith microchemistry[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 836-842. [百度学术]
张汉科. 闽中渔场白姑鱼的年龄与生长特性[J]. 台湾海峡, 1987, 6(3): 269-274. [百度学术]
ZHANG H K. Age and growth of white croaker in the centre Fujian fishing ground[J]. Journal of Oceanography in Taiwan Strait, 1987, 6(3): 269-274. [百度学术]
张健, 杨培民, 姜涛, 等. 基于耳石微化学的大洋河刀鲚生境履历研究[J]. 水生生物学报, 2024, 48(1): 130-137. [百度学术]
ZHANG J, YANG P M, JIANG T, et al. The habitat history of Coilia nasus in Dayang River based on otolith microchemistry[J]. Acta Hydrobiologica Sinica, 2024, 48(1): 130-137. [百度学术]
王继隆, 刘伟, 杨文波, 等. 基于耳石微化学特征的大麻哈鱼生境履历分析及其在群组鉴别中的应用[J]. 中国海洋大学学报, 2021, 51(10): 51-59. [百度学术]
WANG J L, LIU W, YANG W B, et al. Analysis of life history and population identification of chum salmon (Oncorhynchus keta) based on otolith microchemical characteristics[J]. Periodical of Ocean University of China, 2021, 51(10): 51-59. [百度学术]
LEY J A, ROLLS H J. Using otolith microchemistry to assess nursery habitat contribution and function at a fine spatial scale[J]. Marine Ecology Progress Series, 2018, 606, 151-173. [百度学术]
PHILLIS C C, OSTRACH DJ, INGRAM BL, et al. Evaluating otolith Sr/Ca as a tool for reconstructing estuarine habitat use[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(2): 360-373. [百度学术]