摘要
为研究长江口上海近岸海域敌草隆(Diuron)的来源、空间分布特征及生态风险,于2021年10—11月间采集上海长江口沿岸海域、横沙岛(内陆)水域、长江口中华鲟保护区附近海域24个站位水样并通过固相萃取结合高效液相色谱串联质谱法对各站位表层水样中的敌草隆分析测定。结果表明,3个不同区域24个站位水样均有敌草隆检出。其中,上海长江口沿岸10个站位敌草隆质量浓度检测范围为182.43~439.38 ng/L,检出率为100%;横沙岛(内陆)水域9个站位敌草隆质量浓度检测范围为83.48~369.25 ng/L,检出率100%;中华鲟保护区附近海域5个站位敌草隆质量浓度检测范围为1.97~2.85 ng/L,检出率100%。敌草隆的空间分布主要与船舶防污涂料在船舶停靠港口及航运中释放、农业活动、海洋水动力学扩散作用等相关。生态风险评估结果显示,上海长江口沿岸海域具有潜在中风险;横沙岛(内陆)水域农田耕作区具有潜在中风险;中华鲟保护区附近海域具有潜在低风险。研究结果表明,长江口上海近岸海域环境正遭受敌草隆的威胁,尤其是在上海长江口沿岸主要的港口和码头以及横沙岛海域农耕区和河流交汇处。虽然暂时未威胁到中华鲟保护区等生态敏感区域,依旧需要对敌草隆在长江河口及近海海域的环境影响引起重视。
敌草隆 [N-(3,4-二氯苯基)-N,N-二甲基-脲]是一种抑制植物光合作用的除草剂,其化学性质稳定,有环境持久性。我国每年敌草隆在农业除草用量达到1 500
随着我国造船维修业的迅猛发展,船舶航运量的增加,海洋防污涂料的产量和用量也必将随之大幅度增加,特别是坐落在长江口的上海港,拥有各类大型码头、港口,造成包括敌草隆在内的船舶防污剂中活性物质进入水体中的风险也在加大。但目前国内关于长江口海域敌草隆浓度水平的研究缺乏,邓芸芸
2021年10 —11月间,在长江口上海近岸海域121°29′10.32″E~122°10′59.88″E,30°59′30.12″N~31°36′59.76″N范围内,按上海长江口沿岸海域、横沙岛(内陆)水域、中华鲟保护区附近海域3个不同研究区域,共设置了24个站位(

图1 长江口上海近岸海域采样站位图
Fig.1 Location map of sampling stations in Shanghai coastal waters of the Yangtze River Estuary
采集后的水样先过0.45 μm滤膜,然后量取处理后的水样500 mL,参照 GATIDOU
仪器包括液相色谱-串联四极杆质谱联用仪(Waters_TQS)、SPE固相萃取仪、超纯水机、SPE小柱(C18,CNWBOND)。
试剂包括敌草隆标准品[(质量分数99%)购于迈瑞尔公司]、乙腈(色谱纯)、甲醇(色谱纯)、乙酸乙酯(色谱纯)。
上海长江口沿岸海域(S) Shanghai Yangtze River Estuary coastal waters(S) | 横沙岛(内陆)水域(H) Hengsha Island (inland) waters(H) | 中华鲟保护区及附近海域(Z) Chinese sturgeon reserve(Z) |
---|---|---|
S1(大治河) | H1(农耕区) | Z1(保护区) |
S2(三甲港) | H2(红星河) | Z2(保护区) |
S3(外高桥码头) | H3(河流交汇处) | Z3(保护区) |
S4(吴淞炮台湿地森林公园) | H4(农耕区) | Z4(保护区) |
S5(宝山港区) | H5(河流交汇处) | Z5(附近海域) |
S6(潘家沙港口) | H6(河流交汇处) | |
S7(长兴岛客运站) | H7(支流) | |
S8(堡镇码头) | H8(村镇区) | |
S9(陈家镇奚渔村渔船停泊区域) | H9(支流) | |
S10(崇明岛东旺沙) |
样品采用检测范围广、灵敏度高和性能较好的液相色谱-串联四极杆质谱联用仪进行分析。高效液相色谱测定条件:色谱柱(2.1 × 100 mm,1.8 μm);流动相A:超纯水;流动相B:甲醇;流速0.35 mL/min;柱温35 ℃;进样量20 μL;采用梯度洗脱程序,程序为0~1 min,30%B;1~4 min,30%~100%B;4~5 min,100%B;5~5.1min,100%~30%B;5.1~7 min,30%B。质谱条件:采用电喷雾离子源(ESI),正离子扫描;质谱扫描方式:母离子扫描、子离子扫描;毛细管电压:3.06 kV;锥孔电压:93 V;定性离子对质量/电荷(m/z)为233/72,碰撞电压为15 V;定量离子对质量/电荷(m/z)为 233/160,碰撞电压为25 V。按照上述的分析条件可得到目标化合物出峰时间在3.66 min。
为保证数据的准确性,每批样品做一个方法空白以及进行样品平行实验,同时定量分析采用外标法分析。配置质量浓度为0.1、1.0、5.0、10.0、20.0、50.0、100.0、500.0 μg/L系列敌草隆标准浓度在分析方法下进行检测,以质量浓度(M)、对峰面积(A) 进行线性回归分析,得到敌草隆标准曲线线性回归方程为A=953.98M+1 954.7,相关系数
为了检验方法的准确性,在空白样品中分别添加一定量的标准物质,利用上述的预处理方法对样品进行处理,采用分析方法进行检测,测定敌草隆含量(n=6),标准偏差为1.24%~3.28%,加标回收率为77.6%~105.3%。检出限和定量限分别用3倍(0.002 μg/L)和10倍(0.006 6 μg/L)信噪比(S/N)计算获得。
商值
(1) |
式中:RQ表示风险商值,根据RQ商值大小可以划分水体中敌草隆生态风险等级 (
风险商值 Risk quotient | 等 Grade | 毒性效应大小描述 Describe |
---|---|---|
RQ>1.0 | 高风险 | 对水生生物有毒性效应 |
0.2<RQ≤1.0 | 中风险 | 对水生生物有潜在毒性效应 |
0.1<RQ≤0.2 | 中低风险 | 对水生生物有较低潜在毒性效应 |
RQ≤0.1 | 低风险 | 对水生生物无毒性效应 |
根据上述公式以实际环境中不同站位的敌草隆质量浓度值与上述得到的长江口生态风险标准的比值可以求得敌草隆风险商值(RQ)。依据风险商值(RQ)大小划分了长江口近岸海域生态风险不同等级及其生态风险毒性效应,见
上海长江口沿岸敌草隆分布结果如

图2 长江口上海近岸不同研究区域敌草隆的分布
Fig.2 Distribution of diuron in different study areas near the Shanghai coast of the Yangtze River Estuary
横沙岛(内陆)水域敌草隆分布结果如
中华鲟保护区附近海域敌草隆分布结果如
3个不同调查水域敌草隆平均质量浓度水平如

图3 不同调查水域敌草隆平均质量浓度水平
Fig.3 Average mass concentration levels of diuron in different survey waters
S.上海长江口沿岸海域;H.横沙岛(内陆)水域;Z.中华鲟保护区附近海域。
S.Shanghai Yangtze River Estuary coastal waters; H.the Hengsha Island (inland) area; Z.The area near the Acipenser sinensis reserve.
调查海域 Survey sea area | 调查时间 Survey time | 敌草隆质量浓度 Diuron concentration/(ng/L) | 数据来源 Data sources |
---|---|---|---|
长江口上海近岸海域 Shanghai coastal waters of the Yangtze River Estuary | 2021 | 1.97~439.38 | 本文 |
英国肖勒姆港、布赖顿码头 British port of Shalom, Brighton Wharf | 2004 | 7.00~366.00 |
[ |
荷兰停泊港 Dutch berthing port | 2004 | <1.00~1 129.00 |
[ |
英国停泊港 British port of call | 2004 | <1.00~685.00 | |
日本大阪湾 Osaka Bay, Japan | 2007 | 13.00~350.00 |
[ |
浙江省舟山主岛西部近岸 The west coast of Zhoushan main island, Zhejiang Province | 2012 | 4.00~52.10 |
[ |
巴西圣马科斯湾 San Marcos Bay, Brazil | 2018 | 2.80~22.00 |
[ |
通过对3个不同的调查水域敌草隆质量浓度进行显著性分析,发现上海长江口沿岸、横沙岛(内陆)水域、中华鲟保护区附近海域敌草隆质量浓度存在显著性差异(P<0.05),说明3个不同区域敌草隆的来源存在一定的差异,在上海长江口沿岸,船舶防污漆内敌草隆不断向水体中释放是该区域主要的来源。同时在船只休闲时期,船只擦洗和重新喷漆活动的维护也会造成敌草隆向水体中转
敌草隆 Diuron | 粮田面积 Grain field area | 林地面积 Forest land area | |
---|---|---|---|
敌草隆 Diuron | 1 | ||
粮田面积 Grain field area | 0.543 | 1 | |
林地面积 Forest land area | 0.113 | -0.242 | 1 |
根据1.3节的评价方法,分别计算得到不同站位敌草隆的风险商值及3个调查水域总的风险商值,按照上述评价方法分别对不同站位和3个调查区域的生态风险等级进行划定,其生态风险评估结果见
站位 Station | 商值 Quotient | 等级 Grade | 站位 Station | 商值 Quotient | 等级 Grade | 站位 Station | 商值 Quotient | 等级 Grade |
---|---|---|---|---|---|---|---|---|
S1 | 0.11 | 中低风险 | H1 | 0.06 | 低风险 | Z1 | <0.01 | 低风险 |
S2 | 0.22 | 中风险 | H2 | 0.05 | 低风险 | Z2 | <0.01 | 低风险 |
S3 | 0.23 | 中风险 | H3 | 0.18 | 中低风险 | Z3 | <0.01 | 低风险 |
S4 | 0.13 | 中低风险 | H4 | 0.15 | 中低风险 | Z4 | <0.01 | 低风险 |
S5 | 0.24 | 中风险 | H5 | 0.21 | 中风险 | Z5 | <0.01 | 低风险 |
S6 | 0.19 | 中低风险 | H6 | 0.22 | 中风险 | |||
S7 | 0.22 | 中风险 | H7 | 0.09 | 低风险 | |||
S8 | 0.24 | 中风险 | H8 | 0.06 | 低风险 | |||
S9 | 0.26 | 中风险 | H9 | 0.18 | 中低风险 | |||
S10 | 0.12 | 中低风险 | ||||||
S总 | 0.20 | 中低风险 | H总 | 0.12 | 中低风险 | Z总 | <0.01 | 低风险 |
根据

图4 长江口上海近岸海域敌草隆风险区域分布
Fig.4 Risk distribution of diuron in Shanghai coastal area of the Yangtze River Estuary
敌草隆的生态毒性数据表明藻类是其最为敏感的物
长江口上海近岸海域敌草隆质量浓度水平为1.97~439.38 ng/L,上海长江口沿岸敌草隆分布在主要的港口和码头,在横沙岛(内陆)海域,敌草隆分布在农田耕作区和河流交汇处,敌草隆质量浓度水平与当地的粮田和林地面积存在一定关联,其中敌草隆在粮田除草方面贡献更大,在中华鲟保护区附近海域检测出敌草隆,潮汐与海水动力学占据主导因素。
敌草隆在上海长江口近岸,60%的站位属于中风险,剩下的都属于中低风险,整体的生态风险水平是最高的。横沙岛范围内55%的站位属于低风险,在一些农田耕作区和河流交汇地属于中风险,表明横沙岛内敌草隆主要应用于农业除草。而中华鲟保护区及附近海域均属于低风险区,作为中华鲟重要的栖息地,生态保护价值高,依旧需要对保护区内的生态环境保持警惕,避免环境与生物受到威胁。
关于敌草隆作为船舶防污剂的使用,在我国并没有明确的管理措施,这与发达国家之间存在一定的差距,在英语、荷
参考文献
梁艺怀, 刘敏, 邓芸芸, 等. 船舶防污漆杀生活性物质敌草隆的上海港区环境风险评价[C]//中国毒理学会第四届中青年学者科技论坛论文集. 银川: 中国毒理学会, 2014: 19-20. [百度学术]
LIANG Y H, LIU M, DENG Y Y, et al. Environmental risk assessment of Shanghai port area where antifouling paint on ships kills the living substance diuron[C]//Proceedings of the 4th science and technology forum of young and middle-aged scholars of Chinese Society of Toxicology. Yinchuan: Chinese Society of Toxicology, 2014: 19-20. [百度学术]
杨益军. 敌草隆市场现状和未来预测分析[J]. 营销界, 2014(2): 74-76. [百度学术]
YANG Y J. Analysis on the current situation and future forecast of diuron market[J]. Marketing, 2014(2): 74-76. [百度学术]
虞子森, 扈伟杰, 秦秀敏. 国外船舶防污涂料的研究及其发展趋势[J]. 造船技术, 2011(4): 46-49. [百度学术]
YU Z S, HU W J, QIN X M. Research and development trend of antifouling coatings for ships abroad[J]. Shipbuilding Technology, 2011(4): 46-49. [百度学术]
狄兰兰, 蔺存国, 郑纪勇, 等. HPLC在海洋船舶涂料防污剂检测中的应用[J]. 涂料工业, 2008, 38(12): 56-59. [百度学术]
DI L L, LIN C G, ZHENG J Y, et al. Application of high-performance liquid chromatography in test of antifouling compounds of marine coatings[J]. Paint & Coatins Industry, 2008, 38(12): 56-59. [百度学术]
CLIMENT M J, HERRERO-HERNÍNDEZ E, SÁNCHEZ-MARTÍN M J, et al. Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal River basin, central Chile[J]. Environmental Pollution, 2019, 251: 90-101. [百度学术]
薛秋红, 陶琳, 叶曦雯, 等. 高效液相色谱法测定海洋涂料中敌草隆和吡啶硫酮铜[J]. 理化检验(化学分册), 2014, 50(5): 558-560. [百度学术]
XUE Q H, TAO L, YE X W, et al. HPLC determination of diuron and copper pyrithione in marine paint[J]. Physical and Chemical Inspection (Chemical Volume), 2014, 50(5): 558-560. [百度学术]
BACKHAUS T, FAUST M, SCHOLZE M, et al. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action[J]. Environmental toxicology and chemistry, 2004, 23(2): 258-264. [百度学术]
JUNG S M, BAE J S, KANG S G, et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae[J]. Marine Pollution Bulletin, 2017, 124(2): 811-818. [百度学术]
DINIZ L G R, JESUS M S, DOMINGUEZ L A E, et al. First appraisal of water contamination by antifouling booster biocide of 3rd generation at Itaqui Harbor (São Luiz - Maranhão - Brazil)[J]. Sociedade Brasileira de Quimica, 2014, 25(2): 380-388. [百度学术]
NEBEKER A V, SCHUYTEMA G S. Chronic effects of the herbicide diuron on freshwater cladocerans, amphipods, midges, minnows, worms, and snails[J]. Archives of Environmental Contamination and Toxicology, 1998, 35(3): 441-446. [百度学术]
邓芸芸, 梁艺怀, 刘敏, 等. 防污漆活性物质DDT替代品敌草隆在典型港区的环境风险评估[C]//2014中国环境科学学会学术年报术年会(第四章). 成都: 中国环境科学学会, 2014: 1025-1029. [百度学术]
DENG Y Y, LIANG Y H, LIU M, et al. Environmental risk assessment of DDT substitute for antifouling paint in typical port areas[C]//2014 Academic annual report of Chinese Society of Environmental Sciences. Chengdu: Chinese Society for Environmental Sciences, 2014: 1025-1029. [百度学术]
GATIDOU G, KOTRIKLA A, THOMAIDIS N S, et al. Determination of the antifouling booster biocides Irgarol 1051 and diuron and their metabolites in seawater by high performance liquid chromatography-diode array detector[J]. Analytica Chimica Acta, 2005, 528(1): 89-99. [百度学术]
谢文, 史颖珠, 侯建波, 等. 液相色谱-串联质谱法同时测定棉花中乙烯利、噻苯隆和敌草隆药物的残留量[J]. 色谱, 2014, 32(2): 179-183. [百度学术]
XIE W, SHI Y Z, HOU J B, et al. Simultaneous determination of ethephon, thidiazuron, diuron residues in cotton by using high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(2): 179-183. [百度学术]
PALMA P, KÖCK-SCHULMEYER M, ALVARENGA P, et al. Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal)[J]. Science of the Total Environment, 2014, 488-489: 208-219. [百度学术]
PAPADAKIS E N, TSABOULA A, KOTOPOULOU A, et al. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment[J]. Science of the Total Environment, 2015, 536: 793-802. [百度学术]
CHEN Y H, YU K F, HASSAN M, et al. Occurrence, distribution and risk assessment of pesticides in a river-reservoir system[J]. Ecotoxicology and Environmental Safety, 2018, 166: 320-327. [百度学术]
ALI H R, ARIFIN M M, SHEIKH M A, et al. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia[J]. Marine Pollution Bulletin, 2013, 70(1/2): 253-257. [百度学术]
CRESSWELL T, RICHARDS J P, GLEGG G A, et al. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters[J]. Marine Pollution Bulletin, 2006, 52(10): 1169-1175. [百度学术]
胡启山. 农作物农药污染的综合防控[J]. 科学种养, 2012(10): 53. [百度学术]
HU Q S. Comprehensive prevention and control of crop pesticide pollution[J]. Scientific Planting and Breeding, 2012(10): 53. [百度学术]
武菊英, 江国铿, 贾春虹, 等. 森草净防除果园杂草应用技术研究[J]. 林业科技通讯, 2000(10): 30-48. [百度学术]
WU J Y, JIANG G K, JIA C H, et al. Study on application technology of Sencaojin in controlling weeds in orchard[J]. Forestry Science and Technology Communication, 2000(10): 30-48. [百度学术]
沈路遥, 彭自然, 何文辉, 等. 罗氏沼虾养殖塘草甘膦残留特征及生态风险评估[J]. 上海海洋大学学报, 2021, 30(5): 821-827. [百度学术]
SHEN L Y, PENG Z R, HE W H, et al. Residual characteristics and ecological risk assessment of glyphosate in Macrobrachium rosenbergii culture ponds[J]. Journal of Shanghai Ocean University, 2021, 30(5): 821-827. [百度学术]
张建坤, 杨红, 王春峰, 等. 长江口中华鲟保护区附近海域重金属分布特征及生态风险评价[J]. 上海海洋大学学报, 2020, 29(5): 720-733. [百度学术]
ZHANG J K, YANG H, WANG C F, et al. Distribution characteristics and ecological risk assessment of heavy metals in the adjacent sea area of Acipenser sinensis reserve in the Yangtze River Estuary[J]. Journal of Shanghai Ocean University, 2020, 29(5): 720-733. [百度学术]
CAVALCANTI L F, DE AZEVEDO-CUTRIM A C G, OLIVEIRA A L L, et al. Structure of microphytoplankton community and environmental variables in a macrotidal estuarine complex, São Marcos Bay, Maranhão-Brazil[J]. Brazilian Journal of Oceanography, 2018, 66(3): 283-300. [百度学术]
袁小婷. 近40年长江河口潮汐动力变化特征[D]. 上海: 华东师范大学, 2019. [百度学术]
YUAN X T. Variation character of tidal dynamics along Yangtze River estuary for the past four decades[D]. Shanghai: East China Normal University, 2019. [百度学术]
VIANA J L M, DINIZ M D S, SANTOS S R V D, et al. Antifouling biocides as a continuous threat to the aquatic environment: Sources, temporal trends and ecological risk assessment in an impacted region of Brazil[J]. Science of the Total Environment, 2020, 730: 139026. [百度学术]
DE GERÓNIMO E, APARICIO V C, BÁRBARO S, et al. Presence of pesticides in surface water from four sub-basins in Argentina[J]. Chemosphere, 2014, 107: 423-431. [百度学术]
SAPOZHNIKOVA Y, WIRTH E, SCHIFF K, et al. Antifouling biocides in water and sediments from California marinas[J]. Marine Pollution Bulletin, 2013, 69(1/2): 189-194. [百度学术]
KONSTANTINOU I K, ALBANIS T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review[J]. Environment International, 2004, 30(2): 235-248. [百度学术]
EGUCHI S, HARINO H, YAMAMOTO Y. Assessment of antifouling biocides contaminations in Maizuru Bay, Japan[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 684-693. [百度学术]
徐焕志, 于灏, 陆阿定, 等. 舟山西部近岸海域沉积物中敌草隆的含量[J]. 海洋环境科学, 2014, 33(1): 42-45, 77. [百度学术]
XU H Z, YU H, LU A D, et al. Contents of diuron pollution in marine sediments from west coastal sea area of Zhoushan Island[J]. Marine Environmental Science, 2014, 33(1): 42-45, 77. [百度学术]
BOWMAN J C, READMAN J W, ZHOU J L. Seasonal variability in the concentrations of Irgarol 1051 in Brighton Marina, UK; including the impact of dredging[J]. Marine Pollution Bulletin, 2003, 46(4): 444-451. [百度学术]
ANSANELLI G, MANZO S, PARRELLA L, et al. Antifouling biocides (Irgarol, Diuron and dichlofluanid) along the Italian Tyrrhenian coast: Temporal, seasonal and spatial threats[J]. Regional Studies in Marine Science, 2017, 16: 254-266. [百度学术]
SHIELDS B M. The challenge of screening for Glaucoma[J]. American Journal of Ophthalmology, 1995, 120(6): 793-795. [百度学术]
杨颖, 刘鹏霞, 周红宏, 等. 近15年长江口海域海洋生物变化趋势及健康状况评价[J]. 生态学报, 2020, 40(24): 8892-8904. [百度学术]
YANG Y, LIU P X, ZHOU H H, et al. Evaluation of the biodiversity variation and ecosystem health assessment in Changjiang estuary during the past 15 years[J]. Acta Ecologica Sinica, 2020, 40(24): 8892-8904. [百度学术]
SCHREIBER U, MÜLLER J F, HAUGG A, et al. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests[J]. Photosynthesis Research, 2002, 74(3): 317-330. [百度学术]