基于异源数据分段特征融合的海冰厚度反演
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P715;P731.15

基金项目:

国家自然科学基金(42176175,42271335);国家重点研发计划(2019YFD0900805)


Sea ice thickness inversion method based on segmented filtering feature fusion of heterologous remote sensing data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决当前海冰厚度检测中对单一数据源依赖,限制了海冰厚度反演精度进一步提升的问题。本文提出了一种基于异源数据分段特征融合的海冰厚度反演方法,实验采用Sentinel-1 合成孔径雷达数据与ERA5再分析数据,通过对海冰厚度区间 [(0,1.5) m、(0,2)m、(0,3) m 等]进行划分,针对不同分段区间的海冰进行特征优选组合,构建基于堆叠式集成学习的海冰厚度反演模型,利用多个基模型和元模型之间的串并级联实现优势互补,充分挖掘异源特征与海冰厚度之间的隐藏关联,实现分段海冰厚度的精确反演。结果显示,相比其他传统机器学习方法,该方法在不同分段区间获得了较好的整体反演效果,其中,(0,1.5)m区间表现最佳,决定系数(R2)达0.923,均方根误差(RMSE)低至0.089 m。研究表明,通过分段特征优选与异源数据融合可有效提高海冰厚度反演精度,验证了本文提出的堆叠式集成学习模型在异源数据融合中的优势。本研究可为实现海冰厚度高精度反演提供新方法。

    Abstract:

    To address the issue that the reliance on a single data source in current sea ice thickness detection limits the further improvement of sea ice thickness inversion accuracy.This paper proposes a sea ice thickness inversion method based on segmented feature fusion of heterogeneous data,the experiment uses Sentinel-1 synthetic aperture radar (SAR) data and ERA5 reanalysis data,by dividing sea ice thickness intervals (e.g., (0, 1.5) m, (0, 2) m, (0, 3) m), optimal feature combinations are selected for sea ice in different segmented intervals,a sea ice thickness inversion model based on stacked ensemble learning is constructed, which realizes complementary advantages through the series-parallel cascade of multiple base models and meta-models,this approach fully explores the hidden correlations between heterogeneous features and sea ice thickness to achieve accurate inversion of segmented sea ice thickness.The results show that compared with other traditional machine learning methods, this method achieves better overall inversion performance across different segmented intervals,notably, the interval of (0, 1.5) m exhibits the best performance, with a coefficient of determination (R2) reaching 0.923 and a root mean square error (RMSE) as low as 0.089 m.The study demonstrates that segmented feature optimization and heterogeneous data fusion can effectively improve the inversion accuracy of sea ice thickness, verifying the advantages of the proposed stacked ensemble learning model in heterogeneous data fusion. This research provides a new method for achieving high-precision inversion of sea ice thickness.

    参考文献
    相似文献
    引证文献
引用本文

贾飘飘,韩彦岭,何海洋,王静,杨树瑚,张云,洪中华.基于异源数据分段特征融合的海冰厚度反演[J].上海海洋大学学报,2025,34(6):1386-1403.
JIA Piaopiao, HAN Yanling, HE Haiyang, WANG Jing, YANG Shuhu, ZHANG Yun, HONG Zhonghua. Sea ice thickness inversion method based on segmented filtering feature fusion of heterologous remote sensing data[J]. Journal of Shanghai Ocean University,2025,34(6):1386-1403.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-13
  • 最后修改日期:2025-04-25
  • 录用日期:
  • 在线发布日期: 2025-12-06
  • 出版日期:
文章二维码
关闭