基于LSTM模型的中西太平洋鲣栖息地预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S931.1

基金项目:

国家重点研发计划(2023YFD2401301);农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1003)


Habitat prediction of skipjack in the Western and Central Pacific based on LSTM model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决传统栖息地预测模型中无法捕捉具有时间序列信息的环境因子对金枪鱼空间分布滞后影响的不足。采用2021—2024年金枪鱼围网渔捞日志数据,通过构建滞后天数为1、5、10、15 d的长短期记忆(Long-short term memory, LSTM)神经网络模型,分别对单位捕捞努力量渔获量(Catch per unit of effort, CPUE)和经纬度进行了预测。研究表明,滞后10 d的模型精度最高,其均方误差(Mean square error, MSE)为0.018 7,平均绝对误差(Mean absolute error, MAE)为0.077 6,表明鲣空间分布受过去短期内环境累计效应的影响。通过对最佳模型进行验证,结果表明预测纬度与实际纬度之间的R2为0.97,预测经度与实际经度之间的R2为0.65,说明空间分布预测范围与实际基本吻合。为揭示鲣栖息地特征及其生态过程的动态机制提供了新的理解,同时为中西太平洋鲣围网渔业的科学管理提供了重要参考依据。

    Abstract:

    To address the limitations of traditional habitat prediction models in capturing the lagged effects of environmental factors with time series information on tuna spatial distribution, this study utilized tuna purse-seine fishing log data from 2021 to 2024. Long-short term memory (LSTM) neural network models were constructed with lag durations of 1 day, 5 days, 10 days, and 15 days to predict catch per unit of effort (CPUE) and geographic coordinates (latitude and longitude).The findings indicate that the 10-day lag model exhibited the highest accuracy, with a mean square error (MSE) of 0.018 7 and a mean absolute error (MAE) of 0.077 6, suggesting that the spatial distribution of skipjack is influenced by cumulative short-term environmental effects. Validation of the optimal model demonstrated the R2 of 0.97 for predicted versus actual latitude and 0.65 for longitude, indicating a strong alignment between predicted and observed spatial distributions.This research offers new insights into the dynamic mechanisms underlying skipjack tuna habitat characteristics and ecological processes. Furthermore, it provides critical references for the scientific management of skipjack purse seine fisheries in the Western and Central Pacific Ocean.

    参考文献
    相似文献
    引证文献
引用本文

周成,周想,胡媛媛,刘力文.基于LSTM模型的中西太平洋鲣栖息地预测[J].上海海洋大学学报,2025,34(1):153-163.
ZHOU Cheng, ZHOU Xiang, HU Yuanyuan, LIU Liwen. Habitat prediction of skipjack in the Western and Central Pacific based on LSTM model[J]. Journal of Shanghai Ocean University,2025,34(1):153-163.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-01
  • 最后修改日期:2024-12-15
  • 录用日期:2024-12-18
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码