野生型天然rhlC基因缺失菌株铜绿假单胞A39-1的鼠李糖脂产物结构与合成路径解析
作者:
  • 罗惠芳

    罗惠芳

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 戚建华

    戚建华

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 童文涛

    童文涛

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王瑞

    王瑞

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 吕天翊

    吕天翊

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋增福

    宋增福

    上海海洋大学 水产与生命学院, 上海 201306;上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306;上海海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;中国-东盟海水养殖技术一带一路联合实验室, 上海 201306
    在期刊界中查找
    在百度中查找
    在本站中查找
中图分类号:

S917.1

基金项目:

上海市协同创新中心基金项目(ZF1206);国家重点研发计划(2022YFE0203900)


Structure and synthetic pathway analysis of rhamnolipid products from wild-type natural rhlC gene deletion strain Pseudomonas aeruginosa A39-1
Author:
  • LUO Huifang

    LUO Huifang

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QI Jianhua

    QI Jianhua

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TONG Wentao

    TONG Wentao

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Rui

    WANG Rui

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LYU Tianyi

    LYU Tianyi

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Zengfu

    SONG Zengfu

    College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Exploration and Utilisation of Aquatic Genetic Resources Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    为了探究铜绿假单胞菌(Pseudomonas aeruginosa)A39-1菌株以不同碳源发酵所得鼠李糖脂抑菌活性及结构组成,解析铜绿假单胞菌A39-1鼠李糖脂生物合成路径。利用牛津杯法检测鼠李糖脂对常见病原菌的抑菌活性,采用液相色谱-质谱联用技术(LC-MS)检测与分析鼠李糖脂样品的同系物组成,通过第二代测序技术(Illumina Hiseq)和第三代单分子测序技术(PacBio)测定和组装铜绿假单胞菌A39-1的全基因组序列,注释分析鼠李糖脂合成相关基因。结果显示,菌株A39-1以甘油、葡萄糖、葵花籽油、菜籽油和调和油作为唯一碳源发酵生产的鼠李糖脂具有抑菌活性;LC-MS检测为4种单糖单脂(Rha-C8∶2、Rha-C9∶2、Rha-C11∶2和Rha-C10)和4种单糖双脂(Rha-C6∶1-C6∶1、Rha-C12∶1-C12∶1、Rha-C12-C14和Rha-C14∶2-C14∶2),Rha-C11:2为主要结构;基因组预测到algCrmlArmlBrmlCrmlD、rhlA、rhlB相关鼠李糖脂合成基因,缺失编码合成双鼠李糖脂的鼠李糖基转移酶Ⅱ基因rhlC。研究表明,铜绿假单胞菌A39-1为野生型天然rhlC基因缺失株,以不同碳源发酵均能专一性产生单鼠李糖脂,且该单鼠李糖脂具有抑菌活性。本研究探索单鼠李糖脂抑菌活性,解析其组成结构及生物合成路径,为开发水生动物疾病新型绿色防控药物提供新思路。

    Abstract:

    To explore the antibacterial activity and structural composition of rhamnolipids produced by Pseudomonas aeruginosa A39-1 fermentation with various carbon sources, as well as to analyze the rhamnolipid biosynthesis process, the inhibitory activity of rhamnolipids against pathogens was determined using the Oxford cup assay, the congener composition of rhamnolipid samples was detected and analysed using liquid chromatography-mass spectrometry (LC-MS), and the whole genome sequence was determined and assembled using Illumina Hiseq and PacBio. Genome sequence annotated and analysed rhamnolipid synthesis-related genes. Rhamnolipids produced by strain A39-1 by fermentation with glycerol, glucose, sunflower oil, rapeseed oil and blended oil as the sole carbon source had antibacterial activity; LC-MS detection of rhamnolipids obtained by glycerol fermentation as four monosaccharide monolipids (Rha-C8∶2, Rha-C9∶2, Rha-C11∶2, Rha-C10) and four monosaccharide bilipids (Rha-C6∶1-C6∶1, Rha-C12∶1-C12∶1, Rha-C12-C14, Rha-C14∶2-C14∶2), Rha-C11∶2 is the primary structure; The genome was anticipated to have genes for rhamnolipid synthesis related to algC, rmlA, rmlB, rmlC, rmlD, rhlA, rhlB, as well as the absence of gene rhlC encoding rhamnosyltransferase II synthesizes bi-rhamnolipids. Pseudomonas aeruginosa A39-1, a wild-type strain with a natural rhlC gene deletion, produced mono-rhamnolipids exclusively by fermentation with different carbon sources, and the mono-rhamnolipids had antibacterial activity. This study explores the antibacterial activity of mono-rhamnolipids, analyzes composition and biosynthesis pathways, and provides new ideas for the development of new green prevention and control medicines for aquatic animal diseases.

    参考文献
    [1] HARIKRISHNAN R, BALASUNDARAM C, HEO M S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish[J]. Aquaculture, 2011, 317(1/4): 1-15.
    [2] BACCILE N. Are microbial biosurfactants actually only surfactants?[J]. Current Opinion in Colloid & Interface Science, 2023, 68: 101747.
    [3] GUZMÁN E, ORTEGA F, RUBIO R G. Exploring the world of rhamnolipids: a critical review of their production, interfacial properties, and potential application[J]. Current Opinion in Colloid & Interface Science, 2024, 69: 101780.
    [4] ONAIZI S A. Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of Bisphenol A from wastewater[J]. Biocatalysis and Agricultural Biotechnology, 2021, 32: 101929.
    [5] MASSARA H, MULLIGAN C N, HADJINICOLAOU J. Effect of rhamnolipids on chromium-contaminated kaolinite[J]. Soil and Sediment Contamination: An International Journal, 2007, 16(1): 1-14.
    [6] NDLOVU T, RAUTENBACH M, VOSLOO J A, et al. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant[J]. AMB Express, 2017, 7(1): 108.
    [7] SEGHAL KIRAN G, THAJUDDIN N, HEMA T A, et al. Optimization and characterization of rhamnolipid biosurfactant from sponge associated marine fungi Aspergillus sp. MSF1[J]. Desalination and Water Treatment, 2010, 24(1/3): 257-265.
    [8] STOVER C K, PHAM X Q, ERWIN A L, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature, 2000, 406(6799): 959-964.
    [9] DOBLER L, VILELA L F, ALMEIDA R V, et al. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting[J]. New Biotechnology, 2016, 33(1): 123-135.
    [10] PANG A P, WANG Y, ZHANG T, et al. Highly efficient production of rhamnolipid in P. putida using a novel sacB-based system and mixed carbon source[J]. Bioresource Technology, 2024, 394: 130220.
    [11] NITSCHKE M, COSTA S G V A O, HADDAD R, et al. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI[J]. Biotechnology Progress, 2005, 21(5): 1562-1566.
    [12] BENINCASA M, ACCORSINI F R. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate[J]. Bioresource Technology, 2008, 99(9): 3843-3849.
    [13] DAS P, YANG X P, MA L Z. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity[J]. Frontiers in Microbiology, 2014, 5: 696.
    [14] ZHAO F, SHI R J, MA F, et al. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa[J]. Microbial Cell Factories, 2018, 17(1): 39.
    [15] ABDEL-MAWGOUD A M, LÉPINE F, DÉZIEL E. Rhamnolipids: diversity of structures, microbial origins and roles[J]. Applied Microbiology and Biotechnology, 2010, 86(5): 1323-1336.
    [16] ZHAO F, WANG B X, YUAN M L, et al. Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications[J]. Microbial Cell Factories, 2022, 21: 221.
    [17] ROCHA V A L,DE CASTILHO L V A, DE CASTRO R P V, et al. Comparison of mono‐rhamnolipids and di‐rhamnolipids on microbial enhanced oil recovery (MEOR) applications[J]. Biotechnology Progress, 2020, 36(4): e2981.
    [18] INVALLY K, SANCHETI A, JU L K. A new approach for downstream purification of rhamnolipid biosurfactants[J]. Food and Bioproducts Processing, 2019, 114: 122-131.
    [19] DÉZIEL E, LÉPINE F, DENNIE D, et al. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1999, 1440(2/3): 244-252.
    [20] HABA E, ABALOS A, JÁUREGUI O, et al. Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa[J]. Journal of Surfactants and Detergents, 2003, 6(2): 155-161.
    [21] BELOTE B L, TUJIMOTO-SILVA A, HÜMMELGEN P H, et al. Histological parameters to evaluate intestinal health on broilers challenged with Eimeria and Clostridium perfringens with or without enramycin as growth promoter[J]. Poultry Science, 2018, 97(7): 2287-2294.
    [22] KOEN N, VAN BREDA S V, LOOTS D T. Elucidating the antimicrobial mechanisms of colistin sulfate on Mycobacterium tuberculosis using metabolomics[J]. Tuberculosis, 2018, 111: 14-19.
    [23] ZHANG H, LUO Y, ZHAO Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2008(2): 407-413. 张浩, 罗义, 周启星. 四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报, 2008(2): 407-413.
    [24] Ahmad TS, Matty AJ. The effect of feeding antibiotics on growth and body composition of carp (Cyprinus carpio)[J]. Aquaculture, 1989, 77(2): 211-220.
    [25] STANGHELLINI M E, MILLER R M. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens[J]. Plant Disease, 1997, 81(1): 4-12.
    [26] VARNIER A L, SANCHEZ L, VATSA P, et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine[J]. Plant, Cell & Environment, 2009, 32(2): 178-193.
    [27] GOSWAMI D, HANDIQUE P J, DEKA S. Rhamnolipid biosurfactant against Fusarium sacchari—the causal organism of pokkah boeng disease of sugarcane[J]. Journal of Basic Microbiology, 2014, 54(6): 548-557.
    [28] SOLTANI DASHTBOZORG S, MIAO S D, JU L K. Rhamnolipids as environmentally friendly biopesticide against plant pathogen Phytophthora sojae[J]. Environmental Progress & Sustainable Energy, 2016, 35(1): 169-173.
    [29] LIU Y Y, QI J H, WANG N, et al. Inhibitory effect of biosurfactant rhamnolipid on Saprolegnia parasitica in vitro[J]. Journal of Dalian Ocean University, 2022, 37(1): 95-103. 刘韵怡, 戚建华, 王年, 等. 生物表面活性剂鼠李糖脂对寄生水霉的体外抑制作用[J]. 大连海洋大学学报, 2022, 37(1): 95-103.
    [30] ABALOS A, PINAZO A, INFANTE M R, et al. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes[J]. Langmuir, 2001, 17(5): 1367-1371.
    [31] ALEKSIC I, PETKOVIC M, JOVANOVIC M, et al. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives[J]. Frontiers in Microbiology, 2017, 8: 2454.
    [32] SOOD U, SINGH D N, HIRA P, et al. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1[J]. Journal of Biotechnology, 2020, 307: 98-106.
    [33] ZHAO F, YUAN M L, LEI L Y, et al. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry[J]. Bioresource Technology, 2021, 323: 124605.
    [34] NICOLÒ M S, CAMBRIA M G, IMPALLOMENI G, et al. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate[J]. New Biotechnology, 2017, 39: 36-41.
    [35] TSOU A M, FREY E M, HSIAO A, et al. Coordinated regulation of virulence by quorum sensing and motility pathways during the initial stages of Vibrio cholerae infection[J]. Communicative & Integrative Biology, 2008, 1(1): 42-44.
    [36] AUBRY A, HUSSACK G, CHEN W X, et al. Modulation of toxin production by the flagellar regulon in Clostridium difficile[J]. Infection and Immunity, 2012, 80(10): 3521-3532.
    [37] FENG K, LI R G, CHEN Y N, et al. Sequencing and analysis of the Pseudomonas fluorescens GcM5-1A genome: a pathogen living in the surface coat of Bursaphelenchus xylophilus[J]. PLOS One, 2015, 10(10): e0141515.
    [38] ALFANO J R, CHARKOWSKI A O, DENG W L, et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants[J]. Proceedings of the National Academy of Sciences, 2000, 97(9): 4856-4861.
    [39] PRESTON G M, BERTRAND N, RAINEY P B. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25[J]. Molecular Microbiology, 2001, 41(5): 999-1014.
    [40] BRÖMS J E, ISHIKAWA T, WAI S N, et al. A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552[J]. BMC Microbiology, 2013, 13(1): 96.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗惠芳,戚建华,童文涛,王瑞,吕天翊,宋增福.野生型天然rhlC基因缺失菌株铜绿假单胞A39-1的鼠李糖脂产物结构与合成路径解析[J].上海海洋大学学报,2025,34(1):111-122.
LUO Huifang, QI Jianhua, TONG Wentao, WANG Rui, LYU Tianyi, SONG Zengfu. Structure and synthetic pathway analysis of rhamnolipid products from wild-type natural rhlC gene deletion strain Pseudomonas aeruginosa A39-1[J]. Journal of Shanghai Ocean University,2025,34(1):111-122.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-29
  • 最后修改日期:2024-12-18
  • 录用日期:2024-12-19
  • 在线发布日期: 2025-01-22
文章二维码