黄鳍金枪鱼仔鱼脊柱及附肢骨骼的发育
作者:
中图分类号:

Q174

基金项目:

国家重点研发计划(2022YFC2804003);农业农村部公海渔业资源综合科学调查重大专项(D-8021-21-0109-01)


Development of vertebral column and appendicular skeleton in larvae of Thunnus albacares
Author:
Fund Project:

National Key R & D Program of China(2022YFC2804003), Integrated scientific survey of the high seas fishery resources, Major Project of the Ministry of Agriculture and Rural Affairs of China(D-8021-21-0109-01)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了探明黄鳍金枪鱼(Thunnus albacares)脊柱及附肢骨骼的发育特征,基于2022年8月15日—9月9日在菲律宾海用大型仔稚鱼网(口径1.3 m、网目0.5 mm)进行表层水平拖网所采集的黄鳍金枪鱼仔鱼样本,采用软骨-硬骨双染色透明技术,观察了黄鳍金枪鱼仔鱼(前弯曲期9尾,弯曲期12尾,后弯曲期12尾,体长3.1~8.0 mm)脊柱及附肢骨骼的早期发育。结果显示,各鳍形成顺序是胸鳍、尾鳍、第一背鳍和腹鳍、第二背鳍和臀鳍,最后为小鳍;椎体由体前部向尾部逐渐形成;髓弓由体前部向尾部和由体中部向两端生长,脉弓由体中部向两端生长;尾下骨1和2先愈合为一个整体,随后侧尾下骨和尾下骨1+2的基部软骨联合,尾下骨3和4两端愈合,尾下骨5独立;体长8.0 mm个体形成躯椎18枚,尾椎21枚,侧尾下骨1枚,尾下骨5枚,尾上骨2枚。研究表明,侧尾下骨和尾下骨愈合为黄鳍金枪鱼提供了强劲的游泳动力。本研究可作为黄鳍金枪鱼早期阶段的鉴定依据,并为其仔鱼阶段的漂流机制形成提供参考。

    Abstract:

    To understand its osteological development during early stage, 33 larval specimens of Thunnus albacares (9 preflexion larvae, 12 flexion larvae, 12 postflexion larvae, body length: 3.1-8.0 mm) were collected by horizontal trawling at the surface layer by a larval net (1.3 m in diameter, 0.5 mm in mesh size) in the Philippine Sea from August 15th to September 9th, 2022. The specimens were stained and cleared for both cartilage and bone to evaluate their vertebral column and appendicular skeleton development in T. albacares. The results show that the fins were developed in following sequence: pectoral fin, caudle fin, the first dorsal fin and pelvic fin, the second dorsal and anal fin, and finally, finlets. Centrum was formed in a posterior direction. Neural arches were formed in a posterior direction at anterior part of the body and in both anterior and posterior at the middle part of the body. Haemal arches proceeded both anteriorly and posteriorly. Hypural 1 and 2 were fused, and then jointed with the parhypural by cartilage. Hypural 3 and 4 were fused at both ends. Hypural 5 was dissociated. There are 18 precaudal vertebrates, 21 caudal vertebrates, 1 parhypural, 5 hypurals and 2 erpurals in 8.0 mm specimen. The fusions of parhypural and hypurals could enhance the swimming ability for T. albacares. This study can be used as a basis for the fish identification and provides an evidence for the formation of the drift mechanism of T. ablacares larvae.

    参考文献
    [1] WU H L, ZHONG J S. Key to marine and estuarial fishes of China[M]. Beijing:China Agriculture Press, 2021:1172.伍汉霖,钟俊生.中国海洋及河口鱼类系统检索[M].北京:中国农业出版社, 2021:1172.
    [2] ISSF. Status of the World fisheries for tuna[R]. Pittsburgh:International Seafood Sustainability Foundation, 2024:40.
    [3] SAMBAH A B, NOOR'IZZAH A, INTYAS C A, et al. Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia[J]. Biodiversitas Journal of Biological Diversity, 2023, 24(5):2689-2700.
    [4] LIU Z Q, GUO S J, WANG Y C, et al. Hook depth distribution and influencing factors of tuna longline fishing in Western and Central Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):1020-1030.刘志强,郭绍健,王禹程,等.中西太平洋金枪鱼延绳钓钓钩深度分布及其影响因素[J].上海海洋大学学报,2024,33(4):1020-1030.
    [5] LI X C,LIN Q Q, CHEN Z Z,et al. Impact of Indian Ocean tuna fisheries on pelagic ecosystem based on LeMaRns model[J]. Journal of Shanghai Ocean University,2023,32(1):203-216.李秀超,林琴琴,陈作志,等.基于LeMaRns模型评估印度洋金枪鱼渔业对大洋生态系统的影响[J].上海海洋大学学报,2023,32(1):203-216.
    [6] CU M Y, MA Q Y, TIAN S Q, et al. Influence of natural mortality and stock-recruitment relationship on yellowfin tuna (Thunnus albacares) stock assessment[J]. Haiyang Xuebao, 2023, 45(3):40-51.崔明远,麻秋云,田思泉,等.自然死亡和亲体补充关系对黄鳍金枪鱼资源评估的影响[J].海洋学报, 2023, 45(3):40-51.
    [7] HUANG W X, FU W Y, PAN S, et al. Morphology and histology characteristics of gonads of yellowfin tuna (Thunnus albacares) at different developmental stages in South China Sea[J]. Chinese Journal of Fisheries, 2024, 37(2):98-106.黄雯晓,符文雅,潘帅,等.南海黄鳍金枪鱼性腺发育形态观察和组织学研究[J].水产学杂志, 2024, 37(2):98-106.
    [8] PACICCO A E, BROWN-PETERSON N J, MURIE D J, et al. Reproductive biology of yellowfin tuna (Thunnus albacares) in the northcentral U.S. Gulf of Mexico[J]. Fisheries Research, 2023, 261:106620.
    [9] YAN L L, GUO J Y, ZHAO C, et al. Comparative analysis of transcriptome in red muscles of Thunnus albacares of different sizes[J]. Marine Fisheries, 2024, 46(1):1-10.闫路路,郭杰匀,赵超,等.不同规格黄鳍金枪鱼红肌转录组比较分析[J].海洋渔业, 2024, 46(1):1-10.
    [10] DAI S M, ZHOU S J, YU G, et al. Research progress on the culture of tuna[J]. Chinese Fishery Quality and Standards, 2023, 13(1):51-59.戴世明,周胜杰,于刚,等.金枪鱼养殖研究进展[J].中国渔业质量与标准, 2023, 13(1):51-59.
    [11] D'ALESSANDRO E K, SPONAUGLE S, COWEN R K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda[J]. Marine Ecology Progress Series, 2013, 474:227-242.
    [12] OVERTON A S, JONES N A, RULIFSON R. Spatial and temporal variability in instantaneous growth, mortality, and recruitment of Larval River herring in Tar-Pamlico River, North Carolina[J]. Marine and Coastal Fisheries Dynamics Management, and Ecosystem Science, 2012, 4(1):218-227.
    [13] LEIS J M. Vertical and horizontal distribution of fish larvae near coral reefs at Lizard Island, Great Barrier Reef[J]. Marine Biology, 1986, 90(4):505-516.
    [14] MATSUMOTO W M, AHLSTROM E H, JONES S, et al. On the clarification of larval tuna identification particularly in the genus Thunnus[J]. Fishery Bulletin, 1972, 70(1):1-12.
    [15] KAJI T, TANAKA M, OKA M, et al. Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system[J]. Fisheries Science, 1999, 65(5):700-707.
    [16] BOEHLERT G W, MUNDY B C. Vertical and onshore-offshore distributional patterns of tuna larvae in relation to physical habitat features[J]. Marine Ecology Progress Series, 1994, 107:1-13.
    [17] BROMHEAD D, SCHOLEY V, NICOL S, et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares)[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2015, 113:268-279.
    [18] KIM Y S, DELGADO D I, CANO I A, et al. Effect of temperature and salinity on hatching and larval survival of yellowfin tuna Thunnus albacares[J]. Fisheries Science, 2015, 81(5):891-897.
    [19] POTTHOFF T. Osteological development and variation in young tunas, genus Thunnus(Pisces, Scombridae), from the Atlantic Ocean[J]. Fishery Bulletin, 1974, 72(2):563-588.
    [20] OKIYAMA M. An atlas of the early stage fishes in Japan[M]. 2nd ed. Kanagawa:Tokai University Press, 2014:1385-1046.
    [21] KENDALL JR A W, AHLSTROM E H, MOSER H G. Early life history stages of fishes and their characters[M]//MOSER H G, RICHARDS W J, COHEN D M, et al. Ontogeny and Systematics of Fishes. The American Society of Ichthyologists Herpetologists. Lawrence:Allen Press Inc., 1984:11-22.
    [22] DINGERKUS G, UHLER L D. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage[J]. Stain Technology, 1977, 52(4):229-232.
    [23] HUANG J L, HU F, SONG X J, et al. Development of the vertebral column and appendicular skeleton in larvae and juveniles of Chaeturichthys stigmatias[J]. Journal of Shanghai Ocean University, 2022, 31(1):71-85.黄洁丽,胡芬,宋小晶,等.矛尾虾虎鱼仔稚鱼脊柱及附肢骨骼系统的发育观察[J].上海海洋大学学报, 2022, 31(1):71-85.
    [24] YU C Y, GUAN S G, YU D D, et al. Development of vertebral column and appendicular skeleton in larvae and juveniles of fat greenling Hexagrammos otakii[J]. Journal of Dalian Ocean University, 2020, 35(1):47-55.于超勇,官曙光,于道德,等.大泷六线鱼仔稚鱼脊柱及附肢骨骼系统的发育观察[J].大连海洋大学学报, 2020, 35(1):47-55.
    [25] WANG Q R, NI Y Y, LIN L M, et al. Development of the vertebral column and the pectoral and caudal fins in larvae of the large yellow croaker Larimichthys crocea (Richardson)[J]. Acta Hydrobiologica Sinica, 2010, 34(3):467-472.王秋荣,倪玥莹,林利民,等.大黄鱼仔稚鱼脊柱、胸鳍及尾鳍骨骼系统的发育观察[J].水生生物学报, 2010, 34(3):467-472.
    [26] DASILAO J C, YAMAOKA K. Development of the vertebral column and caudal complex in a flyingfish, Parexocoetus mento mento (Teleostei:Exocoetidae)[J]. Ichthyological Research, 1998, 45(3):303-308.
    [27] ZHOU S J, YANG R, YU G, et al. Description of Euthynnus affinis vertebrae and appendages[J]. South China Fisheries Science, 2022, 18(1):84-89.周胜杰,杨蕊,于刚,等.鲔脊椎骨与附肢骨骼描述[J].南方水产科学, 2022, 18(1):84-89.
    [28] YANG R, YU G, HU J, et al. Research on skeleton system of Thunnus tonggol[J]. South China Fisheries Science, 2021, 17(2):36-43.杨蕊,于刚,胡静,等.青干金枪鱼骨骼系统研究[J].南方水产科学, 2021, 17(2):36-43.
    [29] FIERSTINE H L, WALTERS V. Studies in locomotion and anatomy of scombroid fishes[J]. Memoirs of the Southern California Academy of Sciences, 1968, 6:1-31.
    [30] POTTHOFF T, KELLEY S, JAVECH J C. Cartilage and bone development in scombroid fishes[J]. Fishery Bulletin, 1986, 84(3):647-678.
    [31] POTTHOFF T. Development and structure of the caudal complex, the vertebral column, and the pterygiophores in the blackfin tuna (Thunnus atlanticus, Pisces, Scombridae)[J]. Bulletin of Marine Science, 1975, 25(2):205-231.
    [32] LI Z H, YANG T Y. Studies on osteology of Micropterus salmoides(Lacepede) and Lates calcarifer (Bloch)[J]. Acta Zoologica Sinica, 2001, 47(s1):110-115.李仲辉,杨太有.大口黑鲈和尖吻鲈骨骼系统的比较研究[J].动物学报, 2001, 47(s1):110-115.
    [33] CHEN Y G, XIA D, ZHONG J S, et al. Development of the vertebral column and the appendicular skeleton in the larvae and juveniles of Coilia nasus[J]. Journal of Shanghai Ocean University, 2011, 20(2):217-223.陈渊戈,夏冬,钟俊生,等.刀鲚仔稚鱼脊柱和附肢骨骼发育[J].上海海洋大学学报, 2011, 20(2):217-223.
    [34] WU C Y, TANG P Y, ZHONG J S, et al. Development of vertebral column and appendicular skeleton in Collichthys lucidus larvae and juveniles[J]. Journal of Fishery Sciences of China, 2022, 29(10):1500-1509.吴尘艳,唐鹏彦,钟俊生,等.棘头梅童鱼仔稚鱼脊柱及附肢骨骼的早期发育[J].中国水产科学, 2022, 29(10):1500-1509.
    [35] WANG X D, HE M D, ZENG J, et al. Development of the vertebral column and the appendicular skeleton in the larvae and juveniles of Salanx ariakensis in the north of Hangzhou Bay[J]. Journal of Shanghai Ocean University, 2018, 27(6):930-937.王晓东,何鸣笛,曾娇,等.杭州湾北部有明银鱼仔稚鱼脊柱和附肢骨骼发育研究[J].上海海洋大学学报, 2018, 27(6):930-937.
    [36] DENG P P, YAN Y L, SHI Y H. Early development of the vertebral column and appendicular skeleton in Sebastiscus marmoratus larvae[J]. Journal of Zhejiang University (Agriculture& Life Sciences), 2018, 44(6):735-742.邓平平,严银龙,施永海.褐菖鲉仔稚鱼脊柱及附肢骨骼系统的早期发育[J].浙江大学学报(农业与生命科学版), 2018, 44(6):735-742.
    [37] TIAN W F. Study on the development of skeleton and feeding apparatus and their adaption to feeding in Siniperca chuatsi (Perciformes:Sinipercinae)[D]. Shanghai:Shanghai Ocean University, 2012.田文斐.鳜鱼骨骼早期发育以及主要摄食器官发育与摄食行为的适应性研究[D].上海:上海海洋大学, 2012.
    相似文献
    引证文献
引用本文

王晓东,吕莉欣,赵恒权,钟俊生.黄鳍金枪鱼仔鱼脊柱及附肢骨骼的发育[J].上海海洋大学学报,2025,34(2):333-340.
WANG Xiaodong, LYU Lixin, ZHAO Hengquan, ZHONG Junsheng. Development of vertebral column and appendicular skeleton in larvae of Thunnus albacares[J]. Journal of Shanghai Ocean University,2025,34(2):333-340.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-01
  • 最后修改日期:2024-12-03
  • 录用日期:2025-01-06
  • 在线发布日期: 2025-03-13
文章二维码