NaHCO3胁迫对草鱼鳃和肝胰脏组织抗氧化酶与组织结构的影响
CSTR:
作者:
中图分类号:

S917.4

基金项目:

国家现代农业产业技术体系项目(CARS-45-04)


Effects of NaHCO3 stress on antioxidant enzymes and tissue structure in gill and hepatopancreas of grass carp
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探究NaHCO3胁迫对草鱼鳃和肝胰脏组织抗氧化酶和组织结构的影响,采用3个NaHCO3浓度组(10, 20, 30 mmol/L)对草鱼进行NaHCO3胁迫,对鳃和肝胰脏组织进行抗氧化酶(SOD、CAT)酶活性测定和组织病理学观察。结果显示,草鱼在NaHCO3胁迫下,鳃组织SOD、CAT酶和肝胰脏组织CAT酶在72 h内活力变化总体上呈先上升后下降的趋势,仅肝胰脏组织SOD酶在72 h内活力总体呈上升趋势,且各实验组中,两组织的抗氧化酶活力相比空白组具有显著差异;相比空白组,实验组的草鱼鳃组织中,鳃丝翻折和褶皱情况严重、扁平上皮细胞PVC严重脱落、线粒体富集细胞MRC肿胀;在肝胰脏组织中,胰脏细胞肿胀、细胞间隙增大、肝细胞核偏移和空泡化减少。研究表明,NaHCO3胁迫会影响草鱼抗氧化水平,并且对草鱼鳃和肝胰脏组织产生组织损伤,随着浓度增大损伤程度加重。本研究可为盐碱水域草鱼的养殖与推广应用提供参考资料。

    Abstract:

    In order to explore the effects of NaHCO3 stress on antioxidant enzymes and tissue structure of gill and hepatopancreas of grass carp, three NaHCO3 concentration groups (10, 20, 30 mmol/L) were used to stress grass carp with NaHCO3, and the antioxidant enzymes (SOD, CAT) activity and histopathological observation of gill and hepatopancreas were carried out. The results showed that under NaHCO3 stress, the activities of SOD and CAT in gill and CAT in hepatopancreas of grass carp increased first and then decreased within 72 h, and only the activity of SOD in hepatopancreas increased within 72 h. In each experimental group, the activities of antioxidant enzymes in the two tissues were significantly different from those in the blank group. Compared with the blank group, in the gill tissue of grass carp in the experimental group, the gill filaments were seriously folded and wrinkled, the PVC of the flat epithelial cells was seriously exfoliated, and the MRC of the mitochondria-enriched cells was swollen ; in the hepatopancreas, the swelling of the pancreatic cells, the increase of the intercellular space, the deviation of the hepatocyte nucleus and the decrease of the vacuolization were observed. Studies have shown that NaHCO3 stress can affect the antioxidant level of grass carp and cause tissue damage to the gills and hepatopancreas of grass carp, and the degree of damage increases with the increase of concentration. This study could provide reference for the breeding and application of grass carp in saline-alkali waters.

    参考文献
    [1] CHEN X Z, LAI Q F, YAO Z L, et al. Green culture technology model of saline-alkali water[J]. China Fisheries, 2020(9):61-63.陈学洲,来琦芳,么宗利,等.盐碱水绿色养殖技术模式[J].中国水产, 2020(9):61-63.
    [2] LIANG L Q, REN B, CHANG Y M, et al. Inland brackish (alkaline-saline) water resources and fisheries utilization in China[J]. Chinese Fisheries Economics, 2013, 31(4):138-145.梁利群,任波,常玉梅,等.中国内陆咸(盐碱)水资源及渔业综合开发利用[J].中国渔业经济, 2013, 31(4):138-145.
    [3] JIANG Q L, LIN Y H, WANG X H, et al. Effect of NaHCO3 on growth and osmoregulation of Chalcalbumus chalcoides aralensis[J]. Journal of Jilin Agricultural University, 2008, 30(1):106-110, 118.姜秋俚,蔺玉华,王信海,等. NaHCO3对卡拉白鱼生长及渗透调节的影响[J].吉林农业大学学报, 2008, 30(1):106-110, 118.
    [4] CHANG Y M, LIANG L Q. Advances of research of physiological and molecular mechanisms related to alkali-saline adaptation for fish species inhabiting alkali-saline water[J]. Journal of Fisheries of China, 2021, 45(5):798-812.常玉梅,梁利群.耐盐碱鱼类的生理和分子机制研究进展[J].水产学报, 2021, 45(5):798-812.
    [5] SHEN Y B, ZHANG J B, LI J L. Advances in studies on genetic resources of grass carp[J]. Chinese Agricultural Science Bulletin, 2011, 27(7):369-373.沈玉帮,张俊彬,李家乐.草鱼种质资源研究进展[J].中国农学通报, 2011, 27(7):369-373.
    [6] SHEN Y B, WANG L, FU J J, et al. Population structure, demographic history and local adaptation of the grass carp[J]. BMC Genomics, 2019, 20(1):467.
    [7] XU Y, LIANG L Q, SUN B, et al. Establishment of the gill cell line of Leuciscus waleckii and alkaline-tolerant growth characteristics[J]. Journal of Shanghai Ocean University, 2023, 32(2):283-291.徐悦,梁利群,孙博,等.瓦氏雅罗鱼鳃细胞系的建立及其耐碱生长特性初探[J].上海海洋大学学报, 2023, 32(2):283-291.
    [8] WANG S Y, LIANG L Q, CHANG Y M, et al. Mining and analysis of InDels in response to alkali-saline stress in Amur ide (Leuciscus waleckii)[J]. Journal of Fishery Sciences of China, 2022, 29(2):184-199.王双毅,梁利群,常玉梅,等.瓦氏雅罗鱼盐碱适应相关InDels位点的挖掘与分析[J].中国水产科学, 2022, 29(2):184-199.
    [9] WILKIE M P, WRIGHT P A, IWAMA G K, et al. The physiological adaptations of the lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4)[J]. Physiological Zoology, 1994, 67(2):355-380.
    [10] DANULAT E, KEMPE S. Nitrogenous waste excretion and accumulation of urea and ammonia in Chalcalburnus tarichi(Cyprinidae), endemic to the extremely alkaline lake van (eastern Turkey)[J]. Fish Physiology and Biochemistry, 1992, 9(5/6):377-386.
    [11] WANG Y S, GONZALEZ R J, PATRICK M L, et al. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai:a high altitude alkaline saline lake[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2003, 134(2):409-421.
    [12] SUN Y C, HAN S C, YAO M Z, et al. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS[J]. RSC Advances, 2020, 10(3):1552-1571.
    [13] ZHAO Y, WU J W, WANG Y, et al. Role of miR-21 in alkalinity stress tolerance in tilapia[J]. Biochemical and Biophysical Research Communications, 2016, 471(1):26-33.
    [14] ZHAO L, XU P, SUN X W. Ammonia eexcretion related genes expression of common carp under the stress of carbonate alkalinity[J]. Biotechnology Bulletin, 2013(4):185-193.赵兰,徐鹏,孙效文.碳酸盐碱度胁迫下鲤鱼氨排泄相关基因的差异表达[J].生物技术通报, 2013(4):185-193.
    [15] YAO Z L, LAI Q F, HAO Z R, et al. Carbonic anhydrase 2-like and Na+-K+-ATPase α gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress[J]. Fish Physiology and Biochemistry, 2015, 41(6):1491-1500.
    [16] LIU X F, HUANG T Q, LIU E H, et al. Effects of carbonate alkalinity stress on growth, antioxidant capacity and expression of growth-related genes in usscuri whitefish Coregonus ussuriensis[J]. Chinese Journal of Fisheries, 2024, 37(1):1-8.刘雪峰,黄天晴,刘恩慧,等.碳酸盐碱度胁迫对乌苏里白鲑幼鱼生长、抗氧化能力和生长基因表达的影响[J].水产学杂志, 2024, 37(1):1-8.
    [17] WEN J. Growth and physiological adaptation of grass carp at high NaHCO3 alkalinity stress[D]. Shanghai:Shanghai Ocean University, 2023.温健.高NaHCO3碱度下草鱼生长和生理适应研究[D].上海:上海海洋大学, 2023.
    [18] WANG Z, PENG S, MENG L X. Acute toxicity of thiamethoxam and activities of antioxidant enzymes and acetylcholinesterase in juvenile crucian carp Carassius auratus[J]. Fisheries Science, 2020, 39(6):922-927.王召,彭舒,孟立霞.噻虫嗪对鲫鱼的急性毒性和抗氧化酶及乙酰胆碱酯酶活性的影响[J].水产科学, 2020, 39(6):922-927.
    [19] XUE L Z, WU S Q, ZHANG K, et al. Ammonia nitrogen:effects on acute toxicity and antioxidant enzymes system in liver of juvenile of Allogynogenetic gibel carp ‘CAS Ⅲ'[J]. Journal of Agriculture, 2019, 9(3):44-50.薛凌展,吴素琼,张坤,等.氨氮对异育银鲫‘中科3号'幼鱼急性毒性及肝脏抗氧化酶系统的影响[J].农学学报, 2019, 9(3):44-50.
    [20] WANG Y, ZHUANG P, ZHANG L Z, et al. Effects of salinity on survival, growth and antioxidant defense system of Siganus guttatus[J]. Journal of Fisheries of China, 2011, 35(1):66-73.王妤,庄平,章龙珍,等.盐度对点篮子鱼的存活、生长及抗氧化防御系统的影响[J].水产学报, 2011, 35(1):66-73.
    [21] ZHANG Y T. Study of immunological reaction of Luciobarbus capito under saline-alkali stress based on transcriptome sequencing technology[D]. Shanghai:Shanghai Ocean University, 2020.张宇婷.基于转录组技术的大鳞鲃盐碱胁迫免疫应激响应研究[D].上海:上海海洋大学, 2020.
    [22] MATEY V, RICHARDS J G, WANG Y X, et al. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii[J].Journal of Experimental Biology, 2008, 211(7):1063-1074.
    [23] QIN G X, WEI Q, YU J Q. Histological characterization muscular and gill of Gymnocypris przewalskii[J]. Journal of Qinghai University (Natural Science), 2010, 28(2):4-7.秦桂香,魏青,余家庆.青海湖裸鲤肌肉和鳃组织结构特征[J].青海大学学报(自然科学版), 2010, 28(2):4-7.
    [24] ZHANG R Y, LI G G, ZHANG C F, et al. Morphological differentiations of the gills of two Gymnocypris przewalskii subspecies in different habitats and their functional adaptations[J]. Zoological Research, 2013, 34(4):387-391.张仁意,李国刚,张存芳,等.不同生境下青海湖裸鲤(Gymnocypris przewalskii)两亚种鳃形态差异及其功能适应[J].动物学研究, 2013, 34(4):387-391.
    [25] GAO S, CHANG Y M, ZHAO X F, et al. The effect of different bicarbonate alkalinity on the gill structure of amur ide (Leuciscus waleckii)[J]. Acta Hydrobiologica Sinica, 2020, 44(4):736-743.高珊,常玉梅,赵雪飞,等.不同NaHCO3碱度对瓦氏雅罗鱼鳃组织结构的影响[J].水生生物学报, 2020, 44(4):736-743.
    [26] HUANG Y W, YE Y T, CAI C F, et al. The damage of intestinal mucosa barrier structure and the effect of cholesterol and bile acid synthesis pathway in the liver and intestine under MDA in grass carp (Ctenopharyngodon idella)[J]. Acta Hydrobiologica Sinica, 2016, 40(4):869-878.黄雨薇,叶元土,蔡春芳,等. MDA对草鱼肠道黏膜结构屏障损伤和肝胰脏、肠道胆固醇、胆汁酸合成影响[J].水生生物学报, 2016, 40(4):869-878.
    [27] WEN J F, LAN J N, ZHOU H, et al. Effects of different salinities on histological structure of digestive organs of juvenile Lateolabrax maculatus[J]. Journal of Southern Agriculture, 2019, 50(12):2826-2832.温久福,蓝军南,周慧,等.不同盐度对花鲈幼鱼消化器官组织结构的影响[J].南方农业学报, 2019, 50(12):2826-2832.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈立伟,姜雨辰,贾学文,李家乐,邱军强,沈玉帮. NaHCO3胁迫对草鱼鳃和肝胰脏组织抗氧化酶与组织结构的影响[J].上海海洋大学学报,2024,33(5):1098-1105.
CHEN Liwei, JIANG Yuchen, JIA Xuewen, LI Jiale, QIU Junqiang, SHEN Yubang. Effects of NaHCO3 stress on antioxidant enzymes and tissue structure in gill and hepatopancreas of grass carp[J]. Journal of Shanghai Ocean University,2024,33(5):1098-1105.

复制
分享
文章指标
  • 点击次数:323
  • 下载次数: 2881
  • HTML阅读次数: 198
  • 引用次数: 0
历史
  • 收稿日期:2024-05-14
  • 最后修改日期:2024-05-21
  • 在线发布日期: 2024-09-05
文章二维码