基于船舶观测的黑潮延伸体典型涡对的三维结构分析
CSTR:
作者:
中图分类号:

P731.2

基金项目:

国家自然科学基金(42130402);农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1002)


Analysis of the three dimensional structure of a typical dipole in the Kuroshio extension based on shipboard observation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了理解黑潮延伸体(Kuroshio extension,KE)区域活跃的中尺度过程,认识该海域中尺度涡旋的三维结构,以及中尺度涡旋在水团再分配、海-气相互作用方面起到的贡献。基于船舶观测和卫星遥感数据,研究了2022年6—7月分别分布于KE主流轴南北两侧的一个气旋式涡旋(CE)和反气旋式涡旋(AE)构成的典型涡对三维结构特征。结果表明:(1) CE存在南向跨锋运动,剪切强迫主导了该CE的运动过程;AE则相对稳定地存在;(2) CE的“冷舌”结构在海表增温和黑潮暖水扩散作用下逐渐消退;由于对CE所携带冷水的夹带作用,AE表现出“反涡旋海表面温度异常”的结构;(3)该涡对内部温盐异常的多核结构与不同特性水团垂向再分配作用有关,AE内部流场斜压强,理查德森数小于临界值0.25的占比达50%左右,说明易引发湍流混合;CE上层垂向结构稳定,正压性强,使跨密面混合难以进行。该研究工作有助于提升对KE区域涡对特征和涡旋内部结构的认识,为进一步的涡旋动力研究提供支撑。

    Abstract:

    In order to understand the active mesoscale processes in the Kuroshio extension (KE) region, and reveal the three-dimensional structure of mesoscale eddies in this region, as well as the contributions of mesoscale eddies to water mass redistribution and ocean-atmosphere interactions, based on shipboard observations and satellite remote sensing data, this study investigates the three-dimensional structural characteristics of a typical eddy dipole composed of cyclonic eddy (CE) and an anticyclonic eddy (AE) distributed on the north and south sides of the KE axis, respectively, during June-July 2022. Results show that the CE has a southward cross-frontal motion dominated by shear forcing, while the AE remains relatively stable. The "cold tongue" structure of the CE gradually diminishes due to sea surface warming and heat diffusion from the KE axis, with the AE exhibiting a "reverse eddy sea surface temperature anomaly" structure due to the entrainment of cold water carried by the CE. The vertical multi-cores of internal temperature and salinity anomalies in the eddy dipole are related to the vertical redistribution of water masses with different characteristics. The AE's internal flow field is strongly baroclinic, with around 50% of it having a Richardson number less than the critical value of 0.25, indicating a tendency for turbulent mixing. The upper layer of the CE is barotropic, hindering substantial diapycnal mixing. This study helps to enhance understanding of the eddy dipole characteristics and internal structure of eddies in the KE region, providing information for further research on eddy dynamics.

    参考文献
    [1] QIU B, CHEN S M. Variability of the kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11):2090-2103.
    [2] YANG Y, LIANG X S, QIU B, et al. On the decadal variability of the eddy kinetic energy in the Kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.
    [3] NAKANO H, ISHIKAWA I. Meridional shift of the Kuroshio Extension induced by response of recirculation gyre to decadal wind variations[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(13/14):1111-1126.
    [4] DONG D. Mesoscale eddies in the Kuroshio Extension Region from satellite and in-situ data[D]. Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.董迪.基于卫星遥感和现场观测的黑潮延伸区中尺度涡旋研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
    [5] WHALEN C B, TALLEY L D, MACKINNON J A. Spatial and temporal variability of global ocean mixing inferred from Argo profiles[J]. Geophysical Research Letters, 2012, 39(18):L18612.
    [6] WHALEN C B, MACKINNON J A, TALLEY L D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves[J]. Nature Geoscience, 2018, 11(11):842-847.
    [7] MA J, XU H M, DONG C M, et al. Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(13):6313-6330.
    [8] MA X H, CHANG P, SARAVANAN R, et al. Distant influence of Kuroshio eddies on north Pacific weather patterns?[J]. Scientific Reports, 2015, 5(1):17785.
    [9] QIU B, CHEN S M. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(13/14):1098-1110.
    [10] YASUDA I. Hydrographic structure and variability in the Kuroshio-Oyashio transition area[J]. Journal of Oceanography, 2003, 59(4):389-402.
    [11] ITOH S, YASUDA I. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific[J]. Journal of Physical Oceanography, 2010, 40(12):2624-2642.
    [12] SUGIMOTO S, HANAWA K. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio confluence region:Influences of warm eddies detached from the Kuroshio extension[J]. Journal of Climate, 2011, 24(24):6551-6561.
    [13] TATEBE H, YASUDA I. Seasonal axis migration of the upstream Kuroshio Extension associated with standing oscillations[J]. Journal of Geophysical Research:Oceans, 2001, 106(C8):16685-16692.
    [14] HU D, CHEN X, MAO K F, et al. Statistical characteristics of mesoscale eddies near the Kuroshio Extension region[J]. Oceanologia Et Limnologia Sinica, 2018, 49(3):497-511.胡冬,陈希,毛科峰,等.黑潮延伸体邻近区域中尺度涡特征统计分析[J].海洋与湖沼, 2018, 49(3):497-511.
    [15] MARTIN A P, RICHARDS K J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 48(4/5):757-773.
    [16] ZHANG X Y, ZHENG H, ZHU X H, et al. Anatomical study of the three-dimensional structure of a supercharged cold eddy generated in the Kuroshio Extension[J]. Frontiers in Marine Science, 2022, 9:1079178.
    [17] LI M H, CHENG L Q, FAN J X, et al. Evolution and structural analysis of a typical strong mesoscale cold eddy in the Kuroshio extension area based on in-situ observation data and satellite remote sensing data[J]. Transactions of Oceanology and Limnology, 2022, 44(1):22-30.李敏华,程灵巧,范锦晓,等.基于船载和遥感的黑潮延伸体海域典型强中尺度冷涡演变及结构分析[J].海洋湖沼通报, 2022, 44(1):22-30.
    [18] NI Q B, ZHAI X M, WANG G H, et al. Widespread mesoscale dipoles in the global ocean[J]. Journal of Geophysical Research:Oceans, 2020, 125(10):e2020JC016479.
    [19] YANG Q, WANG G H, XU C, et al. The influence of cold filaments on the evol?楴湩瑯敮爠慯捦琠楤潩湰?楬湥?瑳桴敲?瑣牴潵灲楥捳慛汊??琠氼慩渾瑆楲捯?潴捩敥慲湳嬠?嵮???楲?剮敥洠潓瑣敩?卮散湥猼椯湩朾??椲??″水?㈱???????代???ぢ????戰牝?孚??嵎???匠啗娬?坔?????匠畗戬琠牑潉灕椠捂愬氠?浴漠摡敬?眠慏瑢敳牥孲?嵥???楄??整敲灵?却敵慲?刬攠獧敥慮牥捲桡?慩湯摮?传捡敮慤渠潤杩牳慳灩桰楡捴??扮猠瑯牦愠捯瑣獥??楩?????????????????????㈠??扥爠?孯?ぴ嵨?佃??????乥?卛????圼? ̄???卥啮???佩呣传?卥??敲瑴?愼氯? ̄匬甠戲琰爱漶瀬椠挶愨氱??漲搴攳?圹愮琼敢牲 ̄楛渲?慝?牃效捅敌湔瑏?瀠敄爠獂椬猠瑓楃湈杌??甠牍漠獇栬椠潓?汍慅牌杓敏?洠敒愠湍搮攠片?灯敢牡楬漠摯?灳慥牲瑶???景潮牳洠慯瑦椠潮湯?慬湩摮?慡摲瘠敭捥瑳楯潳湣?潬癥攠牥?瑤桩敥?敛湊瑝椮爠攼?搾楐獲瑯牧楲扥畳瑳椠潩湮?牏散来楡潮湯孧?嵡???椼??漾甬爠渲愰氱?漬映?伱挨攲愩渺漱朶爷愭瀲栱礶??楢???有??ㄠ?????????????????扃爠?嬬??嵉?呋????夬???????椠獁琠牶楥扣畴瑯楲漠湧?慯湭摥?晲潹爭浢慡瑳楥潤渠?潤晤?渠潤牥瑴桥?側慩捯楮映楡捬?楯湲瑩整牨浭攠摡楮慤琠敩?睳愠瑡数牰孬?嵣???楯??潴畯爠湡愠汨?潧晨?偲桥祳獯楬捵慴汩?佮挠敮慵湭潥杲物慣灡桬礠??楤????????????????????????扵牥?季?㈠嵲?奤?卲唠??????呥栠敶?潬牯楣杩楴湩?潳映?瑮栠整?乥漠牳瑯桵?偨慥捲楮映楃捡?楩湦瑯敲牮浩敡搠楢慩瑧敨?睛慊瑝攮爠嬼?崾???楲??潬甠牯湦愠汁?潭景??敨潥灲桩祣猠楡据慤氠?剣敥獡敮慩牣挠桔?佣捨敮慯湬獯??椼?? ̄?????‰??有??????????????扢牲?孛??嵝??佈奅???吠????奏?匠啙????????剘传??夠??敳瑯?慣污???楥硤楤湩来?椠湩?琠桴敨?洠敓慯湵摴敨爠楃湨杩??甠牓潥獡栺楍潥?敮砠瑰敲湯獰楥潲湴?慥湳搬?瑳桰敡?晩潯牴浥慭瑰楯潲湡?漠晶?乲潩牡瑢桩?偩慴捹椬映楡据?椠湩瑭数牡浣整搠楯慮琠整?睥慲瑭敯牨孡?嵩???楳??潵畣牴湵慲汥?潊晝??攼潩瀾桊祯獵楲据慡汬?副敦猠敇慥牯捰桨?佳捩散慡湬猠??楳????と?????の?????????????????扃父?嬺??崶‰?伸售??呲匾啛′匴????乎??佃??????坎?乘传?听??敉瑕?慙氬???栠慡湬朮攠獔?潲晥?中潤物瑭桥?偳慩捯楮晡楬挠??湥瑡敮物浣攠摥楤慤瑹攠?坮慡瑬敹牳?灳爠潩灮攠牴瑨楥攠獓?極湴?瑥桲敮?獃畡扬瑩牦潯灲楮捩慡氠?杩祧牨整嬠?嵲???楡??敵潭灥桲祩獣楡捬愠汰?副敤獵散慴牛捊桝??攼瑩琾敊牯獵??楡?????ぇ?????????????び???扣牨?孏??嵡?佳匼??唾丬?′匰?′夬?匱唱???????椰搰效挱愴搮愼汢?瘾慛爲椵慝戠楌汉椠瑄礬?楃湈?瑎桇攠?椠湑琬攠牙流敎搠楃愠瑂攬?睥慴琠敡牬献?潃晨?瑲桡散?湥潲物瑳桴睩散獳琠敯牦渠?獤畤扩慥牳挠瑩楮挠?偨慥挠楣晥楮捴?慡湬搠?瑮桤敩?佮欠桳潥瑣獴歯?匠敯慦?楴湨?爠敓汯慵瑴楨潥湲?琠潏??????祡敳慥牤?灯敮爠楳潡摴?湬潬摩慴汥?瑯楢摳慥汲?捡祴捩汯敮嬠?嵲???椲??漵甠牴湯愠氲‰漱昹??敝漮瀠格祩猾楏捣慥污?副敬獯敧慩牡挠桥?传捌敩慭湮獯??楧????どの???????????????????戩爺?嬰??崭??唶??????????剨????勺?′丰漰渵汾椲渰攱愹牴?攟湥攟狂杋禄?愧渋摰?攋湇猺琭狨澡烋桹禁?球爔慶湛獊晝攮牷猋?楖溼?愠′爰攲愲氬椠猵琳椨挵愩氺氱礰‵猴琭爱愰琶椶昮椼敢摲 ̄潛挲收慝渠孊?崠???椬??祏湎慇洠楃挠獍?漠晚??瑎浇漠獂瀬栠敥牴攠獡?愮渠摏?佥捡敮慩湣猠??楤??????ち????????????????扥牮?孲??嵩?噮?乭????乮??????噮?乴?噥????佯噳?乩??????噮?呩?????敧瑩?慮汛??伮戠猼敩爾癊慯瑵楲潮湡獬?潯晦?慇?祯潰畨湹杳??条畬氠桒慥獳?牡楲湣杨???獥瑡牮楳搼??搾甬爠椲渰朱???刱?″椨渱??愺爸挵栴?木???嬷?崼???楛??敝攠灌?单攠慙?削攬猠敚慈牅捎桇?偑愠牎琬????员漠灆椮挠慃汨?卲瑡畣摴楥敲獩?楴湩?佳挠敯慦渠潧杬牯慢灡桬礠??楥????ぢの????ぬ????????????ddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17):e2021GL094772.
    [28] AGUEDJOU H M A, CHAIGNEAU A, DADOU I, et al. Imprint of mesoscale eddies on air-sea
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢宇辉,程灵巧,张俊,陈新军,魏永亮.基于船舶观测的黑潮延伸体典型涡对的三维结构分析[J].上海海洋大学学报,2024,33(4):1005-1019.
LU Yuhui, CHENG Lingqiao, ZHANG Jun, CHEN Xinjun, WEI Yongliang. Analysis of the three dimensional structure of a typical dipole in the Kuroshio extension based on shipboard observation[J]. Journal of Shanghai Ocean University,2024,33(4):1005-1019.

复制
分享
文章指标
  • 点击次数:94
  • 下载次数: 417
  • HTML阅读次数: 24
  • 引用次数: 0
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-06-11
  • 录用日期:2024-06-20
  • 在线发布日期: 2024-07-09
文章二维码