黄海南部近岸带鱼鱼卵分布及仔鱼输运模式
CSTR:
作者:
中图分类号:

S931.1

基金项目:

国家自然科学基金(41876177);国家重点研发计划(2018YFD0900903);农业农村部财政项目(125C0505)


Study on the distribution of eggs and larval transport of largehead hairtail, Trichiurus japonicus in the coastal southern Yellow Sea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于2018—2022年对黄海南部近岸海域(119°E~124°E,33°N~37°N)的鱼类浮游生物综合调查获得的带鱼鱼卵的丰度数据确定粒子释放区,利用有限体积海岸模型(Finite-volume coastal ocean model, FVCOM),结合拉格朗日粒子追踪算法,模拟了带鱼仔鱼阶段的个体输运过程,以了解黄海南部带鱼的繁殖期、产卵场和育幼场分布,及海洋环境对卵、仔鱼分布和扩散的影响。结果表明,研究海域带鱼春夏季产卵,5、7、8月均有带鱼鱼卵出现,8月为繁殖盛期;带鱼鱼卵5月主要分布在近岸19~30 m水域,而8月则广布于11~70 m水域;带鱼鱼卵出现海域的海表温度(Sea surface temperature, SST)、海底温度(Sea bottom temperature, SBT)分别为13.9~29.7、8.4~28.3 ℃。随机森林(Random forest)算法分析结果表明,温度和水深是影响带鱼鱼卵丰度的主要环境因子。粒子追踪模拟实验结果显示,5月释放的粒子,在1~15 d(鳔未形成、仔鱼无垂直迁移行为)个体主要表现为向粒子释放区西北近岸一带扩散,在16~40 d个体出现昼夜垂直迁移行为后,粒子离开近岸向东扩散至50 m水深附近。7月和8月,在发生垂直迁移行为前,个体在近底层主要从释放区向近岸扩散,发生昼夜垂直迁移行为后,个体从近岸聚集区稍向离岸方向移动;部分释放于外侧水域的粒子则产生向北和东北方向的短距离扩散,扩散模式在整个仔鱼阶段未有显著改变。8月调查获得的带鱼仔鱼聚集区特征与粒子输运模拟实验结果较为一致。我们认为产卵的季节、空间位置,仔鱼垂直迁移特性及区域上升流和锋区结构等是影响带鱼仔鱼输运模式的主要因素。研究结果可为理解黄海南部带鱼鱼卵、仔鱼阶段的栖息地选择机制与早期补充动态及带鱼资源的管理和保护提供科学依据。

    Abstract:

    This study determined the particle release area based on the abundance data of largehead hairtail eggs obtained from the ichthyoplankton surveys in the coastal waters of the southern Yellow Sea (119°E-124°E, 33°N-37°N) conducted from 2018 to 2022. Subsequently, the Finite-volume Coastal Ocean Model (FVCOM) coupled with the Lagrangian particle tracking algorithm was employed to simulate the transport process of largehead hairtail larvae. The primary objectives were to investigate the spawning periods, spawning grounds, and nursery habitats of largehead hairtail in the southern Yellow Sea, and to assess the influence of oceanic conditions on the egg distribution and larval dispersion. The results indicated that largehead hairtail spawned in spring and summer in the southern Yellow Sea with the eggs appeared in May, July and August, and August was the peak spawning month. Largehead hairtail eggs were mainly distributed in 19-30 m waters in May, and 11-70 m waters in August. The sea surface temperature and sea bottom temperature for the presence of largehead hairtail eggs was 13.9-29.7 and 8.4-28.3 ℃ respectively. The Random Forest model analysis revealed that water temperature and depth were the main environmental factors affecting the abundance of largehead hairtail eggs. Particle tracking simulation experiments showed that the particles released in May mainly spread towards the northwest coastal area of the particle release area after 1-15 days (when the swim bladder has not formed and the larvae have no vertical migration behavior), and after 16-40 days(when the swim bladder has formed and the larvae have vertical migration behavior), the particles left the coastal area and spread eastward to the waters near a 50 m water depth. In July and August, before the occurrence of vertical migration behavior, larvae stayed in the near-bottom layer and most of them were transported from the release area to the nearshore waters; After that, larvae moved slightly from the near-shore aggregation area to the off-shore direction. Some of the individuals released in the offshore deep-water areas spread to the north and northeast in a short-distance, and the dispersal pattern did not change significantly in their whole larval stages. Aggregation areas of largehead hairtail larvae derived from field surveys in August were consistent with the results of particle transport simulation experiments. We thought that the season and spatial location of spawning, the diel vertical migration characteristics of larval fish, and the regional upwelling and frontal structure were the dominant factors that shape the transport pattern of largehead hairtail larvae. The results of the study provide a scientific basis for understanding the habitat selection mechanism of egg and larvae stages and early replenishment dynamics of this fish in the southern Yellow Sea, and help for the management and protection of largehead hairtail resources.

    参考文献
    [1] COWEN R K, SPONAUGLE S. Larval dispersal and marine population connectivity[J]. Annual Review of Marine Science, 2009, 1:443-466.
    [2] PECK M A, HUFNAGL M. Can IBMs tell us why most larvae die in the sea?Model sensitivities and scenarios reveal research needs[J]. Journal of Marine Systems, 2012, 93:77-93.
    [3] HOUDE E D. Subtleties and episodes in the early life of fishes[J]. Journal of Fish Biology, 1989, 35(SA):29-38.
    [4] SIEGEL D A, MITARAI S, COSTELLO C J, et al. The stochastic nature of larval connectivity among nearshore marine populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26):8974-8979.
    [5] FOO S A, BYRNE M. Acclimatization and adaptive capacity of marine species in a changing ocean[J]. Advances in Marine Biology, 2016, 74:69-116.
    [6] HUTCHINGS L, BECKLEY L E, GRIFFITHS M H, et al. Spawning on the edge:spawning grounds and nursery areas around the southern African coastline[J]. Marine and Freshwater Research, 2002, 53(2):307-318.
    [7] OSPINA-ALVAREZ A, WEIDBERG N, AIKEN C M, et al. Larval transport in the upwelling ecosystem of central Chile:The effects of vertical migration, developmental time and coastal topography on recruitment[J]. Progress in Oceanography, 2018, 168:82-99.
    [8] TIEDEMANN M, BREHMER P. Larval fish assemblages across an upwelling front:Indication for active and passive retention[J]. Estuarine, Coastal and Shelf Science, 2017, 187:118-133.
    [9] YU X J, XU L J, WU F X. China fishery statistical yearbook[M]. Beijing:China Agriculture Press, 2020.于秀娟,徐乐俊,吴反修. 2020中国渔业统计年鉴[M].北京:中国农业出版社, 2020.
    [10] FAO. Fisheries and Aquaculture Topics. Fisheries Statistics and Information, 1981-2020[EB/OL]. https://www.fao.org/fishery/statistics-query/en/capture/capture_quantity
    [11] LI G X, HAN X B, YUE S H, et al. Monthly variations of water masses in the East China Seas[J]. Continental Shelf Research, 2006, 26(16):1954-1970.
    [12] LIN H C, TSAI C J, WANG H Y. Variation in global distribution, population structures, and demographic history for four Trichiurus cutlassfishes[J]. PeerJ, 2021, 9:e12639.
    [13] ZHOU Y D, XU H X, LIU Z F, et al. A study on variation of stock structure of hairtail, Trichiurus haumela in the East China Sea[J]. Journal of Zhejiang Ocean University (Natural Science), 2002, 21(4):314-320.周永东,徐汉祥,刘子藩,等.东海带鱼群体结构变动的研究[J].浙江海洋学院学报(自然科学版), 2002, 21(4):314-320.
    [14] MI C D. A study on resources, stock structure and variation of reproductive habit of hairtail, Trichiurus haumela in East China Sea[J]. Journal of Fishery Sciences of China, 1997, 4(1):7-14.宓崇道.东海带鱼资源状况、群体结构及繁殖特性变化的研究[J].中国水产科学, 1997, 4(1):7-14.
    [15] SHI Z T, CHEN Q, LI J C, et al. Early growth of largehead hairtail (Trichiurus japonicus) in relation to environmental variables in Bohai Sea based on otolith microstructure[J]. Periodical of Ocean University of China, 2023, 53(6):65-73.时政通,陈琪,李建超,等.基于耳石微结构的渤海带鱼早期生长与环境的关系分析[J].中国海洋大学学报, 2023, 53(6):65-73.
    [16] ZHANG B. Feeding habits and ontogenetic diet shift of hairtail fish (Trichiurus lepturus) in East China Sea and Yellow Sea[J]. Marine Fisheries Research, 2004, 25(2):6-12.张波.东、黄海带鱼的摄食习性及随发育的变化[J].海洋水产研究, 2004, 25(2):6-12.
    [17] SHA X S, RUAN H C, HE G F. A description of the morphological characteristics of the eggs and larvae of the hairtails, Trichiurus Haumela(forskal)[J]. Journal of Fisheries of China, 1981, 5(2):155-160.沙学绅,阮洪超,何桂芬.带鱼卵子和仔、稚鱼的形态特征[J].水产学报, 1981, 5(2):155-160.
    [18] XU H X, LIU Z F, ZHOU Y D. Variation of Trichiurus haumela productivity and recruitment in the East China Sea[J]. Journal of Fisheries of China, 2003, 27(4):322-327.徐汉祥,刘子藩,周永东.东海带鱼生殖和补充特征的变动[J].水产学报, 2003, 27(4):322-327.
    [19] SUN P, CHEN Q, FU C H, et al. Latitudinal differences in early growth of largehead hairtail (Trichiurus japonicus) in relation to environmental variables[J]. Fisheries Oceanography, 2020, 29(6):470-483.
    [20] WU J Z. Spawning characters of Trichiurus Haumela(forskl) in off-shore waters of Zhejiang Province[J]. Journal of Zhejiang College of Fisheries, 1984, 3(2):109-120.吴家骓.浙江近海渔场带鱼的生殖特性[J].浙江水产学院学报, 1984, 3(2):109-120.
    [21] WAN R J, SUN S. The category composition and abundance of ichthyoplankton in the ecosystem of the Yellow Sea and the East China Sea[J]. Acta Zoologica Sinica, 2006, 52(1):28-44.万瑞景,孙珊.黄、东海生态系统中鱼卵、仔稚幼鱼种类组成与数量分布[J].动物学报, 2006, 52(1):28-44.
    [22] XU Z L, CHEN J J. Migratory routes of Trichiurus lepturus in the East China Sea, Yellow Sea and Bohai Sea[J]. Journal of Fisheries of China, 2015, 39(6):824-835.徐兆礼,陈佳杰.东、黄渤海带鱼的洄游路线[J].水产学报, 2015, 39(6):824-835.
    [23] ZHOU Y D, JIN H W, ZHANG H L, et al. Species composition and abundance distributions of ichthyoplankton along the south coast of Zhejiang Province in spring and summer[J]. Oceanologia et Limnologia Sinica, 2013, 44(3):590-598.周永东,金海卫,张洪亮,等.浙江南部沿岸产卵场春、夏季鱼卵、仔稚鱼种类组成与分布[J].海洋与湖沼, 2013, 44(3):590-598.
    [24] JIANG Y W. Quantitative distribution of eggs in economic fish spawning grounds in Haizhou Bay[R]. Marine Fisheries Research, 1964, 18:100-111.姜言伟.海州湾经济鱼类产卵场鱼卵的数量分布[R].海洋水产研究, 1964, 18:100-111.
    [25] PIRES R F T, PELIZÁ, PAN M, et al. "There and back again" -How decapod megalopae find the way home:A modelling exercise for Pachygrapsus marmoratus[J]. Progress in Oceanography, 2020, 184:102331.
    [26] HUANG S, DENG Z G, TANG G Q, et al. Numerical study on blue mackerel larval transport in East China Sea[J]. Journal of Marine Systems, 2021, 217:103515.
    [27] XING Q W, YU H M, YU H Q, et al. A comprehensive model-based index for identification of larval retention areas:a case study for Japanese anchovy Engraulis japonicus in the Yellow Sea[J]. Ecological Indicators, 2020, 116:106479.
    [28] HORIKI N. Vertical distribution of fish eggs and larvae in the Kii Channel[J]. Aquiculture (Japan), 1981, 29:117-124.
    [29] UEHARA D, SHOJI J, OCHI Y, et al. Diel changes in the vertical distribution of larval cutlassfish Trichiurus japonicus[J]. Journal of the Marine Biological Association of the United Kingdom, 2019, 99(2):517-523.
    [30] XIONG W Q. Study on natural mortality of fish eggs in the southern Yellow Sea[D]. Qingdao:Ocean University of China, 2023.熊文清.黄海南部夏季几种鱼类产卵时刻与水层的初步研究[D].青岛:中国海洋大学, 2023.
    [31] CHEN C S, LIU H D, BEARDSLEY R C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model:application to coastal ocean and estuaries[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(1):159-186.
    [32] MENEMENLIS D, CAMPIN J M, HEIMBACH P, et al. ECCO2:High resolution global ocean and sea ice data synthesis[C]//Mercator Ocean Quarterly Newsletter. American Geophysical Union, 2008.
    [33] PADMAN L, EROFEEVA S. Tide model driver (TMD) manual[R]. Earth and Space Research, 2005.
    [34] CHOI J G, JO Y H, MOON I J, et al. Physical forces determine the annual bloom intensity of the giant jellyfish Nemopilema nomurai off the coast of Korea[J]. Regional Studies in Marine Science, 2018, 24:55-65.
    [35] WILLIS J. Modelling swimming aquatic animals in hydrodynamic models[J]. Ecological Modelling, 2011, 222(23/24):3869-3887.
    [36] TAKEMURA A, RAHMAN M S, PARK Y J. External and internal controls of lunar‐related reproductive rhythms in fishes[J]. Journal of Fish Biology, 2010, 76(1):7-26.
    [37] ZHANG W C, YU H Q, YE Z J, et al. Spawning strategy of Japanese anchovy Engraulis japonicus in the coastal Yellow Sea:Choice and dynamics[J]. Fisheries Oceanography, 2021, 30(4):366-381.
    [38] LIU X S,WU J N,HAN G Z,et al. Investigation and regionalization of fisheries resource of the Yellow Sea and Bohai Sea[M]. Beijing:Ocean Press, 1990:201-203.刘舜效,吴敬南,韩光祖,等.黄渤海区渔业资源调查与区划[M].北京:海洋出版社, 1990:201-203.
    [39] JIN X S, ZHAO X Y, MENG T X, et al. Biological resource and habitation environment of the Bohai and Yellow Sea[M]. Beijing:Science Press, 2005:299-302.金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境[M].北京:科学出版社, 2005:299-302.
    [40] WANG F, LI X G, TANG X H, et al. The seas around China in a warming climate[J]. Nature Reviews Earth & Environment, 2023, 4(8):535-551.
    [41] JIN Y, GAO X D, YAN L P, et al. Integrating fish nursery ground conservation with sustainable resource use:The case of Trichiurus japonicus in the East China Sea[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2024, 34(1):e4060.
    [42] MASSEL S R. Hydrodynamics of coastal zones[M]. Amsterdam:Elsevier, 1989:249-299.
    [43] LÜ X G, QIAO F L, XIA C S, et al. Upwelling and surface cold patches in the Yellow Sea in summer:Effects of tidal mixing on the vertical circulation[J]. Continental Shelf Research, 2010, 30(6):620-632.
    [44] WANG J J, YU Z G, WEI Q S, et al. Intra-and inter-seasonal variations in the hydrological characteristics and nutrient conditions in the southwestern Yellow Sea during spring to summer[J]. Marine Pollution Bulletin, 2020, 156:111139.
    [45] WEI C J. Seasonal variability of hydrological properties and turbulent mixing in Southern Yellow Sea[D]. Qingdao:University of Chinese Academy of Sciences, 2018.魏传杰.南黄海水文环境季节变化与湍流混合研究[D].青岛:中国科学院大学, 2018.
    [46] XING Q W, YU H Q, WANG H, et al. An improved algorithm for detecting mesoscale ocean fronts from satellite observations:Detailed mapping of persistent fronts around the China Seas and their long-term trends[J]. Remote Sensing of Environment, 2023, 294:113627.
    [47] WEI Q S, YU Z G, WANG B D, et al. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea[J]. Journal of Marine Systems, 2016, 156:30-45.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蒋慧东,叶振江,李建超,张文超,李宇,张艺笑,张新贵.黄海南部近岸带鱼鱼卵分布及仔鱼输运模式[J].上海海洋大学学报,2024,33(5):1248-1259.
JIANG Huidong, YE Zhenjiang, LI Jianchao, ZHANG Wenchao, LI Yu, ZHANG Yixiao, ZHANG Xingui. Study on the distribution of eggs and larval transport of largehead hairtail, Trichiurus japonicus in the coastal southern Yellow Sea[J]. Journal of Shanghai Ocean University,2024,33(5):1248-1259.

复制
分享
文章指标
  • 点击次数:499
  • 下载次数: 2872
  • HTML阅读次数: 96
  • 引用次数: 0
历史
  • 收稿日期:2024-04-11
  • 最后修改日期:2024-05-06
  • 在线发布日期: 2024-09-05
文章二维码