基于改进强跟踪无迹卡尔曼滤波的饵料动态称重算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH715;TN713;S969.31

基金项目:

上海市科技兴农技术创新项目(2022-02-08-00-12-F01096);国家重点研发计划蓝色粮仓科技创新专项(2019YFD0900401);上海市水产动物良种创制与绿色养殖协同创新中心项目(2021科技02-12);上海市工程技术研究中心建设计划(19DZ2254800);国家自然科学基金国家重大科研仪器研制项目(62027810)


Dynamic weighing algorithm of bait based on improved strong tracking unscented Kalman filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    投饵是虾塘养殖中的重要环节,获取剩余饵料质量是实现精准投饵的关键。为解决在投饵过程中由环境、系统自身等因素引起的剩余饵料称重不准确问题,提出了一种适用于投饵船饵料动态称重的自适应强跟踪无迹卡尔曼滤波算法(SHFL-ASTUKF)。首先,建立称重系统的二阶模型,并对量测结果进行滤波。然后,在渐消因子快速引入的基础上,使用奇异值分解替换Cholesky分解处理误差协方差问题。同时,结合模糊控制算法和Sage-Husa自适应滤波,自适应更新量测噪声协方差和系统噪声协方差,从而抑制滤波过程中的发散情况。对SHFL-ASTUKF进行实例数据仿真和实验验证,结果表明,与强跟踪无迹卡尔曼滤波相比,实例数据仿真中,RMSE提高了14.9%,投饵船剩余饵料称重实验中RMSE平均提高了15.15%,MAE提高17.27%,所提出的算法具有更高的动态测量精度和更好的降噪效果。

    Abstract:

    Baiting is an important part of shrimp pond culture, and obtaining the weight of the remaining bait is the key to achieving accurate baiting. In order to solve the problem of inaccurate weighing of the remaining bait caused by the environment, the system itself and other factors, an adaptive strong-tracking unscented Kalman filtering algorithm (SHFL-ASTUKF) for the dynamic weighing of the bait on baiting boats is proposed. Firstly, a second-order model of the weighing system was established and the measurement results were filtered. Then, based on the fast introduction of the asymptotic cancellation factor, the singular value decomposition was used to replace the Cholesky decomposition to deal with the error covariance problem. Meanwhile, the fuzzy control algorithm and Sage-Husa adaptive filtering were combined to adaptively update the measurement noise covariance and the system noise covariance, so as to suppress the divergence in the filtering process. Example data simulation and experimental validation of SHFL-ASTUKF show that, compared with the strong tracking unscented Kalman filter, the RMSE is improved by 14.9% in the example data simulation, and the RMSE is improved by an average of 15.15% in the experiments of the bait weighing of the remaining bait in the baiting boat and the MAE is improved by 17.27%. The proposed algorithm has higher dynamic measurement accuracy and better noise reduction effect.

    参考文献
    相似文献
    引证文献
引用本文

张丽珍,李旗明,吴迪,保冶君,何睿杰,李志坚.基于改进强跟踪无迹卡尔曼滤波的饵料动态称重算法[J].上海海洋大学学报,2023,32(5):967-977.
ZHANG Lizhen, LI Qiming, WU Di, BAO Yejun, HE Ruijie, LI Zhijian. Dynamic weighing algorithm of bait based on improved strong tracking unscented Kalman filtering[J]. Journal of Shanghai Ocean University,2023,32(5):967-977.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-15
  • 最后修改日期:2023-07-21
  • 录用日期:2023-08-04
  • 在线发布日期: 2023-09-20
  • 出版日期: 2023-09-20
文章二维码