基于YOLO的贻贝检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S968.3;TP391.4

基金项目:

十三五“蓝色粮仓科技创新”国家重点研发计划(2019YFD0900803);上海海洋大学科技发展专项(A2-2006-22-200209)


Mussel detection algorithm based on YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于YOLO的贻贝(Mytilus edulis)识别与检测技术,是实现贻贝分级、分苗等作业环节机械化和智能化的关键。然而,贻贝因外部特征不够清晰明确,给识别准确率的提高带来了挑战。本文提出一种基于改进YOLOv5算法的贻贝目标检测模型(CST-YOLO)。该算法融合CoordAttention注意力机制,以增强特征表达能力;采用SIoU作为边界框回归损失函数,以减少边界框回归损失,提高模型的检测速度;将Head替换为改进的解耦头TSCODE Head来提高检测准确率。并在自制的贻贝数据集上进行算法测试,实验结果显示:相比YOLOv5算法,CST-YOLO算法的准确率P提高了0.428%,mAP_0.5:0.95达到92.221%,提高了1.583%。实验表明CST-YOLO算法在保证检测速度的前提下,有效提高了贻贝目标的检测精度。本研究有助于机器视觉技术在贻贝养殖业自动化与智能化生产加工中的应用。

    Abstract:

    YOLO-based mussel (Mytilus edulis) recognition and detection technology is the key to achieving mechanization and intelligence in the grading, seedling separation, and other operational links of mussels. However, the unclear and indefinite external features of mussels present a challenge to improving recognition accuracy. This paper proposes a mussel object detection model based on the improved YOLOv5 algorithm (CST-YOLO), which integrates the CoordAttention attention mechanism to enhance feature expression ability, uses the SIoU boundary box regression Loss function to reduce the boundary box regression loss and improve the detection speed of the model, and designs an improved decoupled head TSCODE to enhance the detection accuracy. The algorithm testing was performed on a self-constructed dataset of mussels, and the experimental results demonstrated that the CST-YOLO algorithm exhibited an improvement in accuracy (P) by 0.428% compared to the YOLOv5 algorithm, and mAP (mean Average Precision) at IoU thresholds of 0.5 and 0.95 reached 92.221%, indicating a significant increase of 1.583%. These findings highlight the effective enhancement of mussel object detection accuracy while ensuring optimal detection speed achieved by the CST-YOLO algorithm. The present study contributes to the advancement of machine vision technology in facilitating the automation and intelligent production and processing within the mussel farming industry.

    参考文献
    相似文献
    引证文献
引用本文

董兆鹏,岳晓雪,田中旭,侯思凡,姜立盛.基于YOLO的贻贝检测算法[J].上海海洋大学学报,2023,32(5):1015-1023.
DONG Zhaopeng, YUE Xiaoxue, TIAN Zhongxu, HOU Sifan, JIANG Lisheng. Mussel detection algorithm based on YOLO[J]. Journal of Shanghai Ocean University,2023,32(5):1015-1023.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-15
  • 最后修改日期:2023-08-10
  • 录用日期:2023-08-19
  • 在线发布日期: 2023-09-20
  • 出版日期: 2023-09-20
文章二维码