基于基因富集数据的中国金鱼品种谱系研究
CSTR:
作者:
基金项目:

上海科技馆2020-2022年MicroCT成像效果相关基础研究项目(SSTM/SOPZY-03-R2KZ-20200300001)


Phylogenetic history of Chinese goldfish based on gene enrichment data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    金鱼(Carassius auratus)起源于中国,是由野生鲫鱼驯化而来的一种观赏性鱼类。金鱼不同品种间存在巨大外形差异,长期的杂交与人工选择产生了众多的品种,但也导致其谱系关系混乱复杂,划分品种的难度加大。人们尝试了许多方法明确金鱼各品种间的谱系历史与杂交关系,但是至今未取得进展。本研究收集了11个中国金鱼品种,共计59个个体,利用跨物种靶基因富集和高通量测序获取了各品种目标基因序列。以斑马鱼4 434个单拷贝基因位点为参考序列,将金鱼对应的基因按照异源四倍体亚基因组分组,富集的序列分别按照两个亚基因组进行比对分型,产生35 298个单核苷酸多态性(SNPs)位点数据,用于金鱼品种谱系历史和杂交关系的研究。通过主成分分析,品种遗传结构以及系统发育网状图的构建,揭示了中国部分金鱼品种的遗传关系,解释了它们的遗传演化过程:(1)龙睛、琉金两种文种金鱼与和金(文种金鱼)关系较近;珍珠鳞、狮头不是来自于和金,而是独立演化而来。(2)以兰寿为代表的蛋种金鱼虽然早于水泡眼出现,但水泡眼是文种金鱼先出现水泡眼特征,然后文种水泡背鳍消失,演化出现代金鱼中的主流水泡眼。这也解释了蛋种金鱼中,水泡眼出现文种的概率比较大的现象。(3)龙睛鹤顶红与狮头关系密切,先产生了头瘤的性状,而不是从龙睛演化而来,龙睛的性状是在头瘤性状出现之后产生。(4)珍珠鳞、皇冠珍珠、龙睛皇冠珍珠在遗传上关系相近,皇冠珍珠是由珍珠鳞直接演化而来,先出现珍珠鳞而后出现皇冠特征。龙睛皇冠珍珠是最晚演化而来,从龙睛中获得基因,并且可认为是由龙睛与皇冠珍珠杂交而来。研究结果将帮助了解中国金鱼的演化历史,对于金鱼品种的分类和品种培育起到一定的借鉴作用。

    Abstract:

    Goldfish, is an ornamental fish originated in China, which was domesticated from wild crucian carp. There are great differences between different types of goldfish, such as presence or absence of dorsal fin, telescope or bubble eyes, oranda and other characters. Long-term hybridization and artificial selection have produced a large number of goldfish strains, but it also leads to the confusion and complexity in determining pedigree relationship of goldfish, which makes it more difficult to distinguish goldfish strains. People tried many ways to clarify the pedigree history and hybridization relationship between various goldfish strains, but so far no progress has been made. That is why the selection history of most goldfish strains has not been clarified and the hybridization relationships of many goldfish strain have not been confirmed. In this study, tissue samples of 59 individuals from 11 Chinese goldfish strains were collected. Cross-species target gene enrichment and high-throughput sequencing were used to obtain the target gene sequencing data of each goldfish individual. Using 4 434 single-copy gene loci of zebrafish as reference sequences, the corresponding goldfish genes were grouped according to its heterotetraploid subgenome, and the enriched sequences were compared and categorized according to two subgenomes respectively. A total of 35 298 single nucleotide polymorphism (SNPs) loci were called, which were used to study the pedigree history and hybridization relationship of the goldfish strains. Principal component analyses, genetic structure analyses and phylogenetic network map of the two subgenomes were reconstructed to reveal genetic relationship of these Chinese goldfish strains and explain their selection and hybridization history: (1) The telescope and Ryukin were directly evolved from the wakin, while pearlscale and lionhead were not directly evolved from the wakin. (2) Ranchu evolved earlier than egg bubble eye, while the bubble eye had secondly lost its dorsal fin. (3) The telescope-oranda is closely related to the lionhead, which first generated the character of oranda, and later obtained the telescope eyes. (4) Pearlscale, pearlscale-oranda and telescope-pearlscale-oranda are genetically similar. Pearlscale-oranda directly evolved from pearlscale, telescope-pearlscale-oranda is the latest bred form, probably a hybrid of telescope and pearlscale-oranda. The results of this study may help to understand the evolution history of Chinese goldfish and provide some reference for the classification and breeding of goldfish varieties.

    参考文献
    [1] 金晓峰, 张涛. 金鱼养殖现状及发展的几点建议[J]. 科学养鱼, 2019(8): 77-78. JING X F, ZHANG T. Several suggestions for present status and development of golden fish[J]. Scientific Fish Farming, 2019(8): 77-78.
    [2] 林学明, 游美珍, 程惠泉. 我国金鱼养殖业现状与发展的几点建议[J]. 福建农业科技, 2004(1): 45-46. LIN X M, YOU M Z, CHENG H Q. Several suggestions for present status and development of Chinese golden fish[J]. Fujian Agricrltural Science and Technology, 2004(1): 45-46.
    [3] WANG S Y, LUO J, MURPHY R W, et al. Origin of Chinese goldfish and sequential loss of genetic diversity accompanies new breeds[J]. PLoS One, 2013, 8(3): e59571.
    [4] KOMIYAMA T, KOBAYASHI H, TATENO Y, et al. An evolutionary origin and selection process of goldfish[J]. Gene, 2009, 430(1/2): 5-11.
    [5] 殷嘉远, 唐娜, 彭尽晖. 金鱼品系演化与中国古典园林的关系探究[J]. 山东林业科技, 2020, 50(6): 72-77. YIN J Y, TANG N, PENG J H. The relationship between the evolution of goldfish strains and Chinese classical gardens[J]. Journal of Shandong Forestry Science and Technology, 2020, 50(6): 72-77.
    [6] 姚红伟, 吴明, 石建香. 金鱼起源及遗传多样性研究进展[J]. 河北渔业, 2016(9): 53-55. YAO H W, WU M, SHI J X. Advances in the origin and genetic diversity of goldfish[J]. Hebei Fisheries, 2016(9): 53-55.
    [7] 李振德, 张正农, WHITE T. 浅析日本金鱼[J]. 水族世界, 2012(4): 76-81. LI Z D, ZHANG Z N, WHITE T. A brief analysis of Japanese goldfish[J]. Aquarium, 2012(4): 76-81.
    [8] 天山雪. 兰寿起源之寻脉追踪[J]. 水族世界, 2010(6): 84-91. TIAN S X. Ranchu origin of pulse tracking[J]. Aquarium, 2010(6): 84-91.
    [9] 王姝妍. 古环境变化和人工选择对鲫属鱼类遗传结构的影响[D]. 北京: 中国科学技术大学, 2013. WANG S Y. The impacts of paleoenviromental changes and anthropogenic selection on the genetic structure of Carassius[D]. Beijing: University of Science and Technology of China, 2013.
    [10] 王昭明. 日本金鱼良种概述[J]. 水产学杂志, 1998, 11(2): 50-60. WANG Z M. About Japanese strains of Chinese ornamental goldfish[J]. Chinese Journal of Fisheries, 1998, 11(2): 50-60.
    [11] 毕东旭, 张饮江, 王芳, 等. 中国金鱼起源与发展研究进展[C]//2018年中国水产学会学术年会论文摘要集. 西安: 中国水产学会, 2018: 88. BI D X, ZHANG Y J, WANG F, et al. Research progress on the origin and development of Chinese goldfish[C]//2018 China Society of Fisheries. Xi'an, 2018: 88.
    [12] 周浠. 中国金鱼及其养殖[J]. 北京水产, 2000(5): 33-43. ZHOU X. Goldfish and cultivation in China[J]. Journal of Beijing Fisheries, 2000(5): 33-43.
    [13] 王春元, 李延龄. 金鱼(Carassius auratus)染色体组型的研究Ⅰ. 鲫鱼和红龙睛金鱼染色体组型的比较[J]. 遗传学报, 1982, 9(3): 238-242. WANG C Y, LI Y L. Studies on the karyotype of goldfish (Carassius auratus) Ⅰ. A comparative study of the chromosomes in crucian and red dragon-eye goldfish[J]. Journal of Genetics and Genomics, 1982, 9(3): 238-242.
    [14] 罗莉中, 毕世华, 王春元. 金鱼乳酸脱氢酶的同工酶的发生遗传学研究——Ⅰ. 鲫鱼和红龙睛金鱼各组织器官乳酸脱氢酶的同工酶的比较[J]. 遗传学报, 1982, 9(5): 375-380. LUO L Z, BI S H, WANG C Y. Studies on developmental genetics of lactate dehydrogenase isozymes in goldfish (Carassius auratus L.) I. Comparison of lactate dehydrogenase isozymes in various organs of crucian and red dragon-eye goldfish[J]. Journal of Genetics and Genomics, 1982, 9(5): 375-380.
    [15] 王晓梅, 宋文芹, 李秀兰, 等. 用RAPD技术检测野生鲫鱼和四个金鱼代表品种的基因组DNA多态性[J]. 遗传, 1998, 20(5): 7-11. WANG X M, SONG W Q, LI X L, et al. Detection of the genomic DNA polymorphisms in the wild crucian and four representative varieties of goldfish using RAPD technique[J]. Hereditas (Beijing), 1998, 20(5): 7-11.
    [16] 张利红. 中国金鱼品种间遗传多样性的SDS-PAGE蛋白质标记和AFLP标记分析研究[D]. 杭州: 浙江大学, 2007. ZHANG L H. Research on genetic diversities of varieties of goldfish (Carassius auratus var.) by SDS-PAGE and AFLP marker techniques[D]. Hangzhou: Zhejiang University, 2007.
    [17] 张利红, 陈坚, 吴信忠. 金鱼两个品种遗传多样性的AFLP研究[J]. 水产科学, 2008, 27(3): 139-141. ZHANG L H, CHEN J, WU X Z. Analysis of genetic diversity of two varieties of goldfish by AFLP[J]. Fisheries Science, 2008, 27(3): 139-141.
    [18] 朱雪莲, 王志勇, 韩志强. 借助mtDNA控制区序列分析金鱼与不同地域鲫的亲缘关系[J]. 大连水产学院学报, 2010, 25(2): 153-157. ZHU X L, WANG Z Y, HAN Z Q. The phylogenetic relationship between goldfish and crucian carp Carassius auratus in different regions based on mtDNA D-loop region sequence[J]. Journal of Dalian Fisheries University, 2010, 25(2): 153-157.
    [19] 庄远红. 不同品系金鱼和鲫鱼的线粒体分子标记及其系统发育分析[D]. 长沙: 湖南师范大学, 2008. ZHUANG Y H. Mitochondrial DNA molecular markers and phylogenetic relationship of goldfishs and crucian carps[D]. Changsha: Hunan Normal University, 2008.
    [20] 庄远红, 周毅, 牛艳东, 等. 不同品种金鱼和鲫鱼的分子系统发育关系研究[J]. 激光生物学报, 2009, 18(1): 46-49. ZHUANG Y H, ZHOU Y, NIU Y D, et al. Molecular phylogenetic relationships of different varieties of goldfishes (Carssius auratus Var) and crucian carps (Carssius auratus)[J]. Acta Laser Biology Sinica, 2009, 18(1): 46-49.
    [21] CHEN Z L, OMORI Y, KOREN S, et al. De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication[J]. Science Advances, 2019, 5(6): eaav0547.
    [22] KUANG Y Y, ZHENG X H, LI C Y, et al. The genetic map of goldfish (Carassius auratus) provided insights to the divergent genome evolutions in the Cyprinidae family[J]. Scientific Reports, 2016, 6(1): 34849.
    [23] KON T, OMORI Y, FUKUTA K, et al. The Genetic basis of morphological diversity in domesticated Goldfish[J]. Current Biology, 2020, 30(12): 2260-2274.
    [24] CHEN D, ZHANG Q, TANG W Q, et al. The evolutionary origin and domestication history of goldfish (Carassius auratus)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29775-29785.
    [25] MEYER M, KIRCHER M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing[J]. Cold Spring Harbor Protocols, 2010, 2010(6): pdb.prot5448.
    [26] FISHER S, BARRY A, ABREU J, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries[J]. Genome Biology, 2011, 12(1): R1.
    [27] LI C H, HOFREITER M, STRAUBE N, et al. Capturing protein-coding genes across highly divergent species[J]. BioTechniques, 2013, 54(6): 321-326.
    [28] WANG Y, YUAN H, HUANG J M, et al. Inline index helped in cleaning up data contamination generated during library preparation and the subsequent steps[J]. Molecular Biology Reports, 2022, 49(1): 385-392.
    [29] JIANG J M, YUAN H, ZHENG X, et al. Gene markers for exon capture and phylogenomics in ray-finned fishes[J]. Ecology and Evolution, 2019, 9(7): 3973-3983.
    [30] SHEN W, LE S, LI Y, et al. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation[J]. PLoS One, 2016, 11(10): e0163962.
    [31] MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303.
    [32] PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
    [33] BRAASCH I. Genome evolution: domestication of the allopolyploid goldfish[J]. Current Biology, 2020, 30(14): R812-R815.
    [34] EARL D A, VONHOLDT B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conservation Genetics Resources, 2012, 4(2): 359-361.
    [35] JAKOBSSON M, ROSENBERG N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14): 1801-1806.
    [36] ROSENBERG N A. DISTRUCT: a program for the graphical display of population structure[J]. Molecular Ecology Notes, 2004, 4(1): 137-138.
    [37] SHLENS J. A tutorial on principal component analysis[J]. arXiv:1404.1100, 2014.
    [38] FITAK R R. OptM: estimating the optimal number of migration edges on population trees using Treemix[J]. Biology Methods and Protocols, 2021, 6(1): bpab017.
    [39] DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156-2158.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周静彤,何为,李晨虹,张景航,潘伊凌.基于基因富集数据的中国金鱼品种谱系研究[J].上海海洋大学学报,2024,33(1):124-134.
ZHOU Jingtong, HE Wei, LI Chenhong, ZHANG Jinghang, PAN Yiling. Phylogenetic history of Chinese goldfish based on gene enrichment data[J]. Journal of Shanghai Ocean University,2024,33(1):124-134.

复制
分享
文章指标
  • 点击次数:187
  • 下载次数: 617
  • HTML阅读次数: 174
  • 引用次数: 0
历史
  • 收稿日期:2023-04-11
  • 最后修改日期:2023-05-22
  • 录用日期:2023-05-22
  • 在线发布日期: 2024-01-29
  • 出版日期: 2024-01-20
文章二维码