几何形态测量学及其在鱼类生态学研究中的应用进展
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

Q141

基金项目:

国家自然科学基金(41776185);国家重点研发计划项目(2018YFC1406801)


Geometric morphometrics and its application in fish ecology: A review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    几何形态测量学为基于笛卡尔地标点的形状统计分析方法。该方法能够较完整地保留原始样本的形态信息,并配合使用数学与统计学方法对形态数据进行分析,目前已广泛应用至包括鱼类生态学在内的诸多领域中。本文简要概述了几何形态测量学的发展、重要概念、研究方法及其在鱼类生态学中的研究进展。几何形态测量学在鱼类生态学领域中的应用可概括为环境对个体发育的影响、适应辐射、功能形态与生态等3个方面。分析结果认为,几何形态测量学能够在生态学研究中较为细致地反映形态差异并配合后续数据分析,但仍需加强理论研究和技术手段开发。该方法在反映功能形态、结合系统发育、多角度或三维形态分析等方面均大有可为。

    Abstract:

    Geometric morphometrics is a shape statistical analysis method based on Cartesian landmarks. This approach can retain comprehensive shape information of original sample, and analyze shape data along with mathematic and statistical techniques, and is therefore widely used in many fields, including fish ecology. In this review, the development, important concepts, research methods of geometric morphometrics and its research progress of application in fish ecology are briefly described. The application of this approach in the field of fish ecology can be summarized as three aspects, i.e., the effect of environments on individual development, adaptive radiation, and functional form and ecology. The results show that, in the ecological study, geometric morphometrics can reflect explicitly morphological difference and fit the subsequent data analysis, however, the theoretical research and technology development need to be improved. The approach has promising prospects in reflecting functional form and combining ontogenesis, and multi-aspect and three-dimensional shape analysis.

    参考文献
    相似文献
    引证文献
引用本文

朱国平,刘芳沁.几何形态测量学及其在鱼类生态学研究中的应用进展[J].上海海洋大学学报,2022,31(5):1180-1189.
ZHU Guoping, LIU Fangqin. Geometric morphometrics and its application in fish ecology: A review[J]. Journal of Shanghai Ocean University,2022,31(5):1180-1189.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-28
  • 最后修改日期:2022-07-25
  • 录用日期:2022-08-04
  • 在线发布日期: 2022-10-12
  • 出版日期:
文章二维码