基于卷积神经网络的微藻种类识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S946.3

基金项目:

中央级公益性科研院所基本科研业务费专项(2018GH13);中国水产科学研究院基本科研业务费专项(2020TD68)


Identification of microalgae species based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对微藻的光学图像进行采样,并结合国内外专家对微藻鉴定的经验知识,制作了微藻图像数据集,并进行数据增强处理。借助深度学习的原理和方法,构建基于卷积神经网络结构的深度学习模型(AlexNet),对模型进行训练,并利用5折交叉验证方法确保模型的稳定性。结果表明,模型的训练精度为97.86%±1.63%,测试精度为85.86%±0.80%,达到了预期效果。利用AlexNet模型训练得到的参数,对预留的280个样本图像进行实际测试,7个藻种的平均精确度、平均召回率和调和平均数分别为83.3%,84.4%和83.3%,表明深度学习方法是鉴定微藻的一种有效方法。

    Abstract:

    In this study, optical images of 7 microalgae were sampled. Based on the experience and knowledge of experts at home and abroad on identification of marine microalgae, an image data set labeled with algae names was made and data enhancement was carried out.With the help of the principles and methods of deep learning, the AlexNet model based on the structure of convolutional neural network was designed and trained.The 5-fold cross validation method was applied to ensure the stability of the model.The results showed that the average training accuracy of the model can reach 97.86%±1.63%and the average testing accuracy can reach 85.86%±0.80%. By using the parameters obtained from AlexNet model training, the reserved 280 sample images were actually tested.The average accuracy, average recall rate and average F1 Score of the 7 algal species were 83.2%,84.4% and 83.3%, respectively.It was indicated that the deep learning method is an effective way to identify marine toxic algal species.

    参考文献
    相似文献
    引证文献
引用本文

崔雪森,田晓清,康伟,朱浩朋,张胜茂,JOE Silke,戴阳,樊成奇.基于卷积神经网络的微藻种类识别[J].上海海洋大学学报,2021,30(4):710-717.
CUI Xuesen, TIAN Xiaoqing, KANG Wei, ZHU Haopeng, ZHANG Shengmao, JOE Silke, DAI Yang, FAN Chengqi. Identification of microalgae species based on convolutional neural network[J]. Journal of Shanghai Ocean University,2021,30(4):710-717.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-28
  • 最后修改日期:2020-10-14
  • 录用日期:2020-12-08
  • 在线发布日期: 2021-08-05
  • 出版日期: 2021-07-15
文章二维码