大型溞-苦草配合处理富营养化水体的研究
CSTR:
作者:
作者单位:

上海海洋大学,上海海洋大学,上海海洋大学

基金项目:

水体污染控制与治理科技重大专项(2014ZX07101-012-04)


Study on water eutrophication treatment with Daphnia magna and Vallisneria natans control system
Author:
Affiliation:

Shanghai Ocean University,Shanghai Ocean University,Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    生态修复实践中两种以上生物联合处理富营养化水体的技术受到广泛关注。以大型溞(Daphnia magna)、苦草(Vallisneria natans)为浮游动物、沉水植物代表,建立溞-草配合处理系统,以苦草处理为对照组,富营养化水体为空白组,研究处理过程中水质指标、底泥指标、水草生物量变化。结果表明,溞-草系统水和底泥质量指标优于苦草组,水体总氮、总磷、氨氮最终去除率分别为87%、88%、96%,最大去除率分别为70%、70%、86%;底泥总氮去除率39%,总磷去除率38%,27 d即水清见底,苦草生长率达740%。而对照组水体总氮、总磷、氨氮最终去除率分别为35%、33%、57%,最大去除率分别为35%、30%、57%,底泥总氮去除率40%,总磷去除率32%,48 d内未见底,苦草生长率为470%。因此,大型溞促进悬浮物沉降、有利于苦草生长以及稳定系统,溞-草系统配合处理富营养化水体能力大于单一的水草系统,溞-草系统能更快地提高水体透明度,苦草生长率更大,更易保持稳定,实验结果为指导生态修复工程实践提供参考。

    Abstract:

    The technique of combining two or more kinds of organisms to treat eutrophic water in ecological restoration has drawn much attention. In this paper, Daphnia magna and Vallisneria natans were used as the representatives of the zooplankton and submerged macrophytes to establish the combined system of daphnia-grass, the treatment of Vallisneria natans was used as the control group, and the eutrophic water as the blank group. Then we researched the process of water quality indicators, sediment indicators and aquatic biomass changes.The results showed that the quality indexes of water and sediment in the system were superior to that of the bitter Vallisneria natans group. The final removal rates of total nitrogen, total phosphorus and ammonia nitrogen were 87%, 88% and 96%, and the maximum removal rates were 70%,70% and 86%respectively. The removal rate of total nitrogen in sediment was 39% and the removal rate of total phosphorus was 38%. After 27 days of water clearing, the growth rate of Vallisneria natans reached 740%. In the control group, the final removal rates of total nitrogen, total phosphorus and ammonia nitrogen were 35%, 33% and 57%, and the maximum removal rates were 35%, 30% and 57% respectively, and the removal rate of the total nitrogen and total phosphorus was 40% and 32%, respectively. The water was not clear enough to see the bottom after 48 days, and the growth rate of Vallisneria natans was 470%.Therefore, Daphnia magna promoted the settlement of suspended solids, which is conducive to the growth of Vallisneria natans and the stability of the system. The ability of daphnia-grass system to deal with eutrophic water is greater than single aquatic systems, and it can speed up the transparency of water, achieve a higher growth rate of Vallisneria natans and is easier to maintain the stability. All in all, the experimental results provide reference for guiding the ecological restoration engineering practice.

    参考文献
    [1] 姚雁鸿, 余来宁. 生物操纵在退化湖泊生态恢复上的应用[J]. 江汉大学学报(自然科学版), 2007, 35(2):81-84.YAO Y H, YU L N. Biomanipulation and its application in restoration of degradation lake[J]. Journal of Jianghan University (Natural Sciences), 2007, 35(2):81-84.
    [2] MOSS B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[J]. Hydrobiologia, 1990, 200(1):367-377.
    [3] 谷孝鸿, 张圣照, 白秀玲, 等. 东太湖水生植物群落结构的演变及其沼泽化[J]. 生态学报, 2005, 25(7):1541-1648.GU X H, ZHANG S Z, BAI X L, et al. Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands[J]. Acta Ecological Sinica, 2005, 25(7):1541-1648.
    [4] SHAPIRO J, LAMARRA V, LYNCH M. Biomanipulation:an ecosystem approach to lake restoration[C]//BREZONIK P L, Fox J L eds. Proceedings of a Symposium on Water Quality Management through Biological Control. Gainesville:University of Florida, 1975:85-96.
    [5] 孙刚, 盛连喜. 湖泊富营养化治理的生态工程[J]. 应用生态学报, 2001, 12(4):590-592.SUN G, SHENG L X. Ecological engineering for eutrophication control in lake[J]. Chinese Journal of Applied Ecology, 2001, 12(4):590-592.
    [6] 石岩, 张喜勤, 付春艳, 等. 浮游动物对净化湖泊富营养化的初步探讨[J]. 东北水利水电, 1998(3):31-33.SHI Y, ZHANG X Q. Preliminary discussion on eutrophication of purified lakes by zooplankton[J].Water Resources & Hydropower of Northeast China, 1998(3):31-33.
    [7] 刘晶, 秦玉洁, 丘焱伦, 等. 生物操纵理论与技术在富营养化湖泊治理中的应用[J]. 生态科学, 2005, 24(2):188-192.LIU J, QIN Y J, QIU Y L, et al. Advances on biomanipulation in control of eutrophic lakes[J]. Ecological Science, 2005, 24(2):188-192.
    [8] 马剑敏, 成水平, 贺锋, 等. 武汉月湖水生植被重建的实践与启示[J]. 水生生物学报, 2009, 33(2):222-229.MA J M, CHENG S P, HE F, et al. Practice and implication of establishing aquatic vegetation in Lake Yuehu in Wuhan, China[J]. Acta Hydrobiologica Sinica, 2009, 33(2):222-229.
    [9] 马帅, 王程丽, 张亚捷, 等. 氮磷浓度对藻-溞-草间相互作用的影响[J]. 水生生物学报, 2012, 36(1):66-72.MA S, WANG C L, ZHANG Y J, et al. Influences of nitrogen and phosphorus concentration on interactions among Chlorella vugaris, Daphnia magna and Ceratophyllum demersum[J]. Acta Hydrobiologica Sinica, 2012, 36(1):66-72.
    [10] 熊秉红, 李伟. 我国苦草属(Vallisneria L.)植物的生态学研究[J]. 武汉植物学研究, 2000, 18(6):500-508.XIONG B H, LI W. Ecological studies on Vallisneria L. in China[J]. Journal of Wuhan Botanical Research, 2000, 18(6):500-508.
    [11] 祖艳群, 李元, 陈海燕, 等. 蔬菜中铅镉铜锌含量的影响因素研究[J]. 农业环境科学学报, 2003, 22(3):289-292.ZU Y Q, LI Y, CHEN H Y, et al. Research on factors influencing concentrations of Pb, Cd, Cu and Zn in vegetable[J]. Journal of Agro-Environment Science, 2003, 22(3):289-292.
    [12] 胡旭. 富营养化湖泊水生植被恢复及其生态效应研究[D]. 武汉:华中农业大学, 2013.HU X. Restoration of aquatic vegetation and its ecological effects in eutrophic lake[D]. Wuhan:Huazhong Agricultural University, 2013.
    [13] 张治中. 滇池氮与富营养化研究[J]. 环境科学导刊, 2007, 26(6):34-36.ZHANG Z Z. Study on nitrogen and eutriophication of Dianchi Lake[J]. Environmental Science Survey, 2007, 26(6):34-36.
    [14] 周小宁, 王圣瑞, 金相灿. 沉水植物黑藻对沉积物有机、无机磷形态及潜在可交换性磷的影响[J]. 环境科学, 2006, 27(12):2421-2425.ZhOu X N, WANG S R, JIN X C. Influences of submerged vegetation Hydrilla verticillata on the forms of inorganic and organic phosphorus and potentially exchangeable phosphate in sediments[J]. Environmental Science, 2006, 27(12):2421-2425.
    [15] 张木兰, 潘纲, 陈灏, 等. 改性沉积物除藻对水质改善的效果研究[J]. 环境科学学报, 2007, 27(1):13-17.ZHANG M L, PAN G, CHEN H, et al. Study of the effect on water quality improvement by removal of algal blooms using modified sediment[J]. Acta Scientiae Circumstantiae, 2007, 27(1):13-17.
    [16] 孙小静, 秦伯强, 朱广伟. 蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J]. 中国环境科学, 2007, 27(3):341-345.SUN X J, QIN B Q, ZHU G W. Release of colloidal phosphorus, nitrogen and organic carbon in the course of dying and decomposing of cyanobacteria[J]. China Environmental Science, 2007, 27(3):341-345.
    [17] CARIGNAN R, KALFF J. Phosphorus sources for aquatic weeds:water or sediments?[J]. Science, 1980, 207(4434):987-989.
    [18] 么男. 天津市河湖水生态治理与修复技术研究[D]. 天津:天津大学, 2015.YAO N. Research on treatment and rehabilitation technology of Tianjin rivers and Lakes ecological[D]. Tianjin:Tianjin University, 2015.
    [19] 周裔文, 许晓光, 韩睿明, 等. 水体氮磷营养负荷对苦草净化能力和光合荧光特性的影响[J]. 环境科学, 2018, 39(3):1180-1187.ZHOU Y W, XU X G, HAN R M, et al. Effect of nutrient loadings on the regulation of water nitrogen and phosphorus by Vallisneria natans and its photosynthetic fluorescence characteristics[J]. Environmental Science, 2018, 39(3):1180-1187.
    [20] 黎慧娟. 富营养水体中光照、营养及浮游植物对沉水植物生长和生理影响的研究[D]. 武汉:中国科学院研究生院(水生生物研究所), 2006.LI H J. The influences of light, nutrition and phytoplankton on growth and physiology of submerged macrophytes in eutrophic waters[D]. Wuhan:Institute of Hydrobiology, Chinese Academy of Sciences, 2006.
    [21] 蔡清洁. pH和盐度对大型溞摄食行为及抗逆响应的影响[D]. 上海:上海海洋大学, 2015.CAI Q J. The effects of feeding behavior and resistance response on daphnia magna about pH and salinity[D]. Shanghai:Shanghai Ocean University, 2015.
    [22] 徐昇, 李欣, 钟萍, 等. 苦草根系对硝氮和氨氮的吸收[J]. 生态科学, 2012, 31(3):312-317.XU S, LI X, ZHONG P, et al. The uptake of nitrate and ammonium by the root of Vallisneria natans[J]. Ecological Science, 2012, 31(3):312-317.
    [23] 王程丽. 氮磷浓度对溞-藻-草三者间相互作用关系的影响研究[D]. 新乡:河南师范大学, 2011.WANG C L. Study on the interaction among flea-algae-grass cultured in different nitrogen and phosphorus concentration[D]. Xinxiang:Henan Normal University, 2011.
    [24] BURKS R L, LODGE D M, JEPPESEN E, et al. Diel horizontal migration of zooplankton:costs and benefits of inhabiting the littoral[J]. Freshwater Biology, 2002, 47(3):343-365.
    [25] CANFIELD D E JR. Prediction of chlorophyll a concentrations in Florida Lakes:the importance of phosphorus and nitrogen[J]. JAWRA Journal of the American Water Resources Association, 1983, 19(2):255-262.
    [26] 李佩. 附着藻类及浮游植物与苦草的相互关系研究[D]. 武汉:华中农业大学, 2012.LI P. Researchs on the relationships between periphytic algae, phytoplankton and Vallisneria natans[D]. Wuhan:Huazhong Agricultural University, 2012.
    [27] 宋大祥. 大型溞(Daphnia magna Straus)的初步培养研究[J]. 动物学报, 1962, 14(1):49-62.SONG D X. Studies on the culturing of Daphnia magna Straus (Crustacea, Cladocera)[J]. Acta Zoologica Sinica, 1962, 14(1):49-62.
    [28] SCHEFFER M, CARPENTER S, FOLEY J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856):591-596.
    [29] 杨凤娟, 蒋任飞, 饶伟民, 等. 沉水植物在富营养化浅水湖泊修复中的生态机理[J]. 安徽农业科学, 2016, 44(26):58-61.YANG F J, JIANG R F, RAO W M, et al. Ecological mechanisms of submerged macrophytes inthe restoration of eutrophic shallow lakes[J]. Journal of Anhui Agricultural Sciences, 2016, 44(26):58-61.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马进,何文辉,彭自然,华雪铭,冯悦,黄仲园,卓帅,周丽丽.大型溞-苦草配合处理富营养化水体的研究[J].上海海洋大学学报,2018,27(4):515-521.
MA Jin, HE Wenhui, PENG Ziran, HUA Xueming, FENG Yue, HUANG Zhongyuan, ZHUO Shuai, ZHOU Lili. Study on water eutrophication treatment with Daphnia magna and Vallisneria natans control system[J]. Journal of Shanghai Ocean University,2018,27(4):515-521.

复制
分享
文章指标
  • 点击次数:4014
  • 下载次数: 2514
  • HTML阅读次数: 285
  • 引用次数: 0
历史
  • 收稿日期:2017-11-13
  • 最后修改日期:2017-12-21
  • 录用日期:2018-05-21
  • 在线发布日期: 2018-07-16
文章二维码