西北太平洋柔鱼BP神经网络渔场预报模型比较研究
CSTR:
作者:
作者单位:

上海海洋大学海洋科学学院;,上海海洋大学海洋科学学院,上海海洋大学海洋科学学院,上海海洋大学海洋科学学院

基金项目:

海洋局公益性行业专项(20155014);国家科技支撑计划(2013BAD13B01)


Comparative study on the forecasting models of squid fishing ground in the northwest Pacific Ocean based on BP artificial neural network
Author:
  • WEI Lian

    WEI Lian

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xinjun

    CHEN Xinjun

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China;Key Loboratory of Sustainble Exploition of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LEI Lin

    LEI Lin

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Oceanic Fisheries Exploration, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China;Key Loboratory of Sustainble Exploition of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jintao

    WANG Jintao

    College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

College of Marine Sciences,Shanghai Ocean University;,College of Marine Sciences,Shanghai Ocean University,College of Marine Sciences,Shanghai Ocean University,College of Marine Sciences,Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    柔鱼是西北太平洋的重要经济种类。研究根据1995-2001年7-11月采集的鱿钓生产数据以及相对应的海洋环境因子数据,包括经纬度、表温(SST)和海平面高度距平(SSHA),分别以单位捕捞努力量渔获量(CPUE)和捕捞努力量作为中心渔场指标,采用BP神经网络方法,以经纬度、海洋环境因子作为输入因子,分别以CPUE和捕捞努力量作为输出因子,采用4-3-1和4-2-1两种模型,共4种方案对西北太平洋柔鱼渔场进行预报,并以拟合残差最小的模型作为最优预报模型。分析结果显示,7-11月各月中心渔场预报模型均以4-3-1模型为最优,但7、8月最优预报模型以捕捞努力量为输出的4-3-1模型,9、10、11月最优预报模型以CPUE为输出的4-3-1模型,总体平均误差以捕捞努力量为输出的4-3-1模型为最小。研究认为,CPUE和捕捞努力量作为中心渔场预报指标有差异,以捕捞努力量为输出的4-3-1模型较合适作为柔鱼渔场预报模型。

    Abstract:

    Squid is one of the important economic species in the northwestern Pacific. Using Catch per Unit Effort and V% as the target of central fishing ground and adopting BP artificial neural network, we forecast fishing ground in the northwest Pacific Ocean. The study was based on the data of squid fishing and relevant marine environment factors, including longitude, latitude, SST and SSHA from July to November from 1995 to 2001.The input factor is marine environment factor, the output factors are CPUE and V% and 4-3-1 and 4-2-1 model total 4 kinds models were used to compare which is the best suitable model for fishery forecast. The minimum fitting residual of model is the best one. Result shows that 4-3-1 is the best suitable model for each month, but the best suitable model for July and August is 4-3-1 with output V% and best suitable model for September, October and November is 4-3-1 with output CPUE, the minimum overall average error is 4-3-1 model output V%. Research suggests that there are differences as a center of fishery forecast targets by CPUE and V%, and the 4-3-1 model output V% can be used as forecasting model of squid fishing ground.

    参考文献
    [1] CHEN X J, LIU B L, CHEN Y. A review of the development of Chinese distant-water squid jigging fisheries[J]. Fisheries Research, 2008, 89(3):211-221.
    [2] 陈新军. 渔业资源与渔场学[M]. 北京:海洋出版社, 2004. CHEN X J. Fishery Resources and Fisheries Science[M]. Beijing:China Ocean Press, 2004.
    [3] 陈新军, 刘必林, 田思泉, 等. 利用基于表温因子的栖息地模型预测西北太平洋柔鱼(Ommastrephes bartramii)渔场[J]. 海洋与湖沼, 2009, 40(6):707-713. CHEN X J, LIU B L, TIAN S Q, et al. Forecasting the fishing ground of Ommastrephes bartramii with SST-based habitat suitability modelling in northwestern Pacific[J]. Oceanologia et Limnologia Sinica, 2009, 40(6):707-713.
    [4] 张月霞, 丘仲锋, 伍玉梅, 等. 基于案例推理的东海区鲐鱼中心渔场预报[J]. 海洋科学, 2009, 33(6):8-11. ZHANG Y X, QIU Z F, WU Y M, et al. Predicting central fishing ground of Scomber japonica in East China Sea based on case-based reasoning[J]. Marine Sciences, 2009, 33(6):8-11.
    [5] 周为峰, 樊伟, 崔雪森, 等. 基于贝叶斯概率的印度洋大眼金枪鱼渔场预报[J]. 渔业信息与战略, 2012, 27(3):214-218. ZHOU W F, FAN W, CUI X S, et al. Fishing ground forecasting of bigeye tuna in the Indian ocean based on bayesian probability model[J]. Fishery Information & Strategy, 2012, 27(3):214-218.
    [6] 樊伟, 陈雪忠, 沈新强. 基于贝叶斯原理的大洋金枪鱼渔场速预报模型研究[J]. 中国水产科学, 2006, 13(3):426-431. FAN W, CHEN X Z, SHEN X Q. Tuna fishing grounds prediction model based on Bayes probability[J]. Journal of Fishery Sciences of China, 2006, 13(3):426-431.
    [7] 张衡, 崔雪森, 樊伟. 基于遥感数据的智利竹筴鱼渔场预报系统[J]. 农业工程学报, 2012, 28(15):140-144. ZHANG H, CUI X S, FAN W. Predicting system of Chilean jack mackerel fishing grounds based on remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15):140-144.
    [8] 崔雪森, 伍玉梅, 张晶, 等. 基于分类回归树算法的东南太平洋智利竹筴鱼渔场预报[J]. 中国海洋大学学报, 2012, 42(7/8):53-59. CUI X S, WU Y M, ZHANG J, et al. Fishing ground forecasting of Chilean jack mackerel (Trachurus murphyi) in the southeast pacific ocean based on CART decision tree[J]. Periodical of Ocean University of China, 2012, 42(7/8):53-59.
    [9] FIEDLER P C, S MITH G B, LAURS R M. Fisheries applications of satellite data in the eastern North Pacific[J]. Marine Fishery Review, 1984, 46(3):1-13.
    [10] LASKER R, PELÁEZ J, LAURS R M. The use of satellite infrared imagery for describing ocean processes in relation to spawning of northern Anchovy (Engraulis mordax)[J]. Remote Sensing of Environment, 1981, 11:439-453.
    [11] STEVENSON W R, PASTULA E J J R. Observations on remote sensing in fisheries[J]. Marine Fishery Review, 1971, 33(9):9-21.
    [12] LAURS R M, FIEDLER P C, MONTGOMERY D R. Albacore tuna catch distributions relative to environmental features observed from satellites[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1984, 31(9):1085-1099.
    [13] 史忠植. 知识发现[M]. 北京:清华大学出版社, 2002:1-295. SHI Z Z. Knowledge Discovery[M]. Beijing:Tsinghua University Press, 2002:1-295.
    [14] HAGAN M T, DEMUTH H B, BEALE M H. Neural network design[M]. Boston, London:PWS Publishing, 1996.
    [15] 邵帼瑛, 张敏. 东南太平洋智利竹筴鱼渔场分布及其与海表温关系的研究[J]. 上海水产大学学报, 2006, 15(4):468-472. SHAO G Y, ZHANG M. A study on correlation of fishing ground distribution of jack mackerel (Trachurus murphyi) versus SST in the southeast Pacific Ocean[J]. Journal of Shanghai Fisheries University, 2006, 15(4):468-472.
    [16] 周甦芳, 樊伟, 崔雪森, 等. 环境因子对东海区帆式张网主要渔获物渔获量影响[J]. 应用生态学报, 2004, 15(9):1637-1640. ZHOU S F, FAN W, CUI X S, et al. Effects of environmental factors on catch variation of main species of stow net fisheries in East China Sea[J]. Chinese Journal of Applied Ecology, 2004, 15(9):1637-1640.
    [17] BETRAND A, JOSSE E, BACH P, et al. Hydrological and trophic characteristics of tuna habitat:consequences on tuna distribution and longline catchability[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(6):1002-1013.
    [18] 徐洁, 陈新军, 杨铭霞. 基于神经网络的北太平洋柔鱼渔场预报[J]. 上海海洋大学学报, 2013, 22(3):432-438. XU J, CHEN X J, YANG M X. Forecasting on fishing ground of red flying squid (Ommastrephes bartramii) in the North Pacific Ocean based on artificial neural net[J]. Journal of Shanghai Ocean University, 2013, 22(3):432-438.
    [19] 汪金涛, 高峰, 雷林, 等. 基于神经网络的东南太平洋茎柔鱼渔场预报模型的建立及解释[J]. 海洋渔业, 2014, 36(2):131-137. WANG J T, GAO F, LEI L, et al. Modeling of fishing grounds for Dosidicus gigas based on BP neural network in southeast Pacific[J]. Marine Fisheries, 2014, 36(2):131-137.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏联,陈新军,雷林,汪金涛.西北太平洋柔鱼BP神经网络渔场预报模型比较研究[J].上海海洋大学学报,2017,26(3):450-457.
WEI Lian, CHEN Xinjun, LEI Lin, WANG Jintao. Comparative study on the forecasting models of squid fishing ground in the northwest Pacific Ocean based on BP artificial neural network[J]. Journal of Shanghai Ocean University,2017,26(3):450-457.

复制
分享
文章指标
  • 点击次数:4203
  • 下载次数: 3910
  • HTML阅读次数: 1413
  • 引用次数: 0
历史
  • 收稿日期:2016-05-16
  • 最后修改日期:2016-12-06
  • 录用日期:2017-03-29
  • 在线发布日期: 2017-05-25
文章二维码