碳酸盐碱度对达里湖瓦氏雅罗鱼耗氧率、氨氮排泄和排氨基因表达的影响
CSTR:
作者:
作者单位:

黑龙江水产研究所,黑龙江水产研究所

基金项目:

国家自然科学基金(31461163004);黑龙江省科技攻关项目(GCI2B307)


Effects of carbonate alkalinities on oxygen consumption, ammonia excretion and ammonia excretion gene expression in Leuciscus waleckii Dybowski
Author:
Affiliation:

Heilongjiang River Fisheries Research Institute,Heilongjiang River Fisheries Research Institute

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用封闭流水式呼吸室法,研究了不同浓度碳酸盐碱度(以下简称CA, 10、30、50、70、90、110 mmol/L)对体质量为(84.62±6.70)g的达里湖瓦氏雅罗鱼耗氧率、氨氮排泄率、血氨含量及排氨基因Rh家族(RhagRhbgRhcg1Rhcg2)在鳃组织中表达量的影响。结果表明,随着碱度的升高,瓦氏雅罗鱼的耗氧率和排氨率均表现为先下降后上升的趋势,且都显著低于对照组(P<0.05)。在CA90时,耗氧率和排氨率均达到最低值,表明CA90可能是达里湖瓦氏雅罗鱼所能承受的最大碱度胁迫。相反,随着碱度的升高,瓦氏雅罗鱼的血氨含量呈现先上升后下降的趋势,在CA90时达到峰值。然而在CA0~50时,瓦氏雅罗鱼血氨含量无显著差异(P>0.05),表明达里湖瓦氏雅罗鱼进化出特殊的排氨机制,使其体内能够保持较低的氨氮含量以此规避氨中毒。定量PCR显示,参与氨转运的4种Rh基因在不同碱度处理组均有不同程度的上调表达;其中Rhcg1Rhcg2在高碱度(CA110)最为显著(P<0.05),表明Rhcg1Rhcg2可能在达里湖瓦氏雅罗鱼高碱胁迫下的排氨过程中发挥重要作用。能量代谢研究(O:N)发现,在CA0~70时,雅罗鱼无需消耗过多能源物质即可实现高碱度胁迫下的能量需求;而在碱度为90~110时,则主要消耗脂肪和碳水化合物供能,减少蛋白质耗能,以此降低毒氨的产生。依据上述研究结果,深入探讨了达里湖瓦氏雅罗鱼在高碱胁迫下的排氨策略及其可能的生理和分子机制,为推动达里湖瓦氏雅罗鱼在不同类型盐碱水域的增养殖提供科学依据。

    Abstract:

    Effects of different concentrations of carbonate alkalinities on oxygen consumption rate, ammonia excretion rate, plasma ammonia content as well as relative gene expression profile of Rh family in gill of Leuciscus waleckii Dybowski fish were studied using closed water flow respiration measurement chamber. Oxygen consumption rate and ammonia excretion rate were significantly inhibited in different alkalinity conditions in comparison with those in control, and the lowest values of them were found at CA90, which indicated CA90 may be the alkalinity limit for this species. Contrarily, the plasma ammonia content showed the opposite trend, first increasing, then decreasing, and peaked at CA90. No significant difference was found for plasma ammonia content when CA ranged from 0 to 50 mm, indicating this species has evolved to have specific ammonia excretion mechanism and thus helps to maintain the low level of toxic ammonia form. Quantitative real-time PCR showed that Rhcg1 and Rhcg2 out of the four tested genes in Rh family may play an important role in the process of ammonia excretion under high alkaline stress. Energy metabolism (O:N) study found that L. waleckii Dybowski did not consume too much energy to satisfy the energy needs within tolerance range (CA0-70); however, when the environmental alkalinity was between 90 and 110, the body fat and carbohydrates became the main energy sources to reduce protein consumption, which in turn decreased the poisonous ammonia excretion. This study served to elucidate the ammonia excretion strategy and possible physiological and molecular mechanism of ammonia excretion in L. waleckii Dybowski under high alkaline stress and it may provide evidence for aquaculturing L. waleckii Dybowski species in different carbonate alkaline water bodies.

    参考文献
    [1] 王慧, 来琦芳, 房文红. 沧州运东地区盐碱水资源对开展渔业的影响[J]. 河北渔业, 2003(5): 16-18. WANG H, LAI Q F, FANG W H. Infection of saline-alkali water resource to fishery development in area east of canal of Cangzhou city[J]. Hebei Fisheries, 2003(5): 16-18.
    [2] 杨富亿, 李秀军, 杨欣乔, 等. 凡纳滨对虾对东北碳酸盐型盐碱水域的适应能力[J]. 海洋科学, 2008, 32(1): 41-44. YANG F Y, LI X J, YANG X Q, et al. Adaptability of Litopenaeus vannamei to carbonate saline-alkaline waters in northeast China[J]. Marine Sciences, 2008, 32(1): 41-44.
    [3] 李延松, 董崇智, 赵春刚. 黑龙江上游黑河江段瓦氏雅罗鱼渔业生物学研究[J]. 黑龙江水产, 2004(2): 36-38. LI Y S, DONG C Z, ZHAO C G. Study on the fishery biology of Leuciscus waleckii (Dybowski) in Heilongjiang section of the upstream of Heilongjiang River[J]. Heilongjiang Fisheries, 2004(2): 36-38.
    [4] 池炳杰, 常玉梅, 闫学春, 等. 瓦氏雅罗鱼达里湖群体和乌苏里江群体的遗传多样性和遗传结构分析[J]. 中国水产科学, 2010, 17(2): 228-235. CHI B J, CHANG Y M, YAN X C, et al. Genetic variability and genetic structure of Leuciscus waleckii Dybowski in Wusuli River and Dali Lake[J]. Journal of Fishery Sciences of China, 2010, 17(2): 228-235.
    [5] VON OERTZEN J A. Resistance and capacity adaptation of juvenile silver carp, Hypophthalmichthys molitrix (Val.), to temperature and salinity[J]. Aquaculture, 1985, 44(4): 321-332.
    [6] WANG J Q, LIU H L, PO H Y, et al. Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings[J]. Aquaculture, 1997, 148(2/3): 115-124.
    [7] 唐贤明, 隋曌, 田景波, 等. 盐度对大菱鲆幼鱼耗氧率和排氨率的影响[J]. 南方水产, 2006, 2(4): 54-58. TANG M X, SUI Z, TIAN J B, et al. Effects of salinity on metabolic rate of juvenile turbot (Scophamus maximus)[J]. South China Sea Fisheries Science, 2006, 2(4): 54-58.
    [8] 柴学军, 胡则辉, 徐君卓, 等. 盐度和pH对日本黄姑鱼幼鱼耗氧率和排氨率的影响[J]. 浙江海洋学院学报(自然科学版), 2009, 28(2): 146-150. CHAI X J, HU Z F, XU J Z, et al. Effect of salinity and pH on oxygen consumption rate and ammonia excretion rate in Juvenile Nibea japonica[J]. Journal of Zhejiang Ocean University (Natural Science), 2009, 28(2): 146-150.
    [9] 李加儿, 曹守花, 区又君, 等. 温度、盐度和pH对鲻幼鱼耗氧率、排氨率以及窒息点的影响[J]. 中国水产科学, 2014, 21(5): 954-962. LI J E, CAO S H, QU Y J, et al. Influence of temperature, salinity, and pH on oxygen consumption rate, ammonia excretion rate, and suffocation point in juvenile Mugil cephalus[J]. Journal of Fishery Sciences of China, 2014, 21(5): 954-962.
    [10] BERGMAN A N, LAURENT P, OTIANG'A-OWITI G, et al. Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline- and saline-adapted teleost fish[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2003, 136(3): 701-715.
    [11] ROBINSON M L. Physiological and genetic factors influencing thermal tolerance in the Lahontan Cutthroat Trout (Oncorhynchus clarkii henshawi)[D]. Reno: University of Nevada, 2010.
    [12] WANG Y S, GONZALEZ R J, PATRICK M L, et al. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: A high altitude alkaline saline lake[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2003, 134(2): 409-421.
    [13] 安晓萍, 齐景伟, 罗旭光, 等. 不同水体中瓦氏雅罗鱼的氨氮排泄率以及血液和组织中氨氮含量研究[J]. 现代农业科技, 2014, (4): 244-245, 247. AN X P, QI J W, LUO X G, et al. Ammonia excretion rates and contents in blood and other tissues in Leuciscus waleckii from different water systems[J]. Modern Agricultural Science and Technology, 2014, (4): 244-245, 247.
    [14] CHANG Y M, TANG R, SUN X W, et al. Genetic analysis of population differentiation and adaptation in Leuciscus waleckii[J]. Genetica, 2013, 141(10/12): 417-429.
    [15] 池炳杰, 梁利群, 刘春雷, 等. 滩头雅罗鱼幼鱼对NaCl浓度和碱度的适应性分析[J]. 中国水产科学, 2011, 18(3): 689-694. CHI B J, LIANG L Q, LIU C L, et al. Adaptability of Tribolodon brandti (Dybowski) to NaCl concentration and alkalinity[J]. Journal of Fishery Sciences of China, 2011, 18(3): 689-694.
    [16] 雷衍之. 淡水养殖水化学[M]. 南宁: 广西科学技术出版社, 1993: 65-77, 114-116, 164-166. LEI Y Z. Water chemistry of fresh water farming[M]. Nanning: Guangxi Science & Technology Press, 1993: 65-77, 114-116, 164-166.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18654.8-2008养殖鱼类种质检验第8部分: 耗氧率与临界窒息点的测定[S]. 北京: 中国标准出版社, 2008: 1-5. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 18654.8-2008 Inspection of germplasm for cultured fishes-Part 8: Determination oxygen consuming rate and critical stifling point[S]. Beijing: China Standards Press, 2008: 1-5.
    [18] 梁秀丽, 潘忠泉, 王爱萍, 等. 碘量法测定水中溶解氧[J]. 化学分析计量, 2008, 17(2): 54-56. LIANG X L, PAN Z Q, WANG A P, et al. Determination of dissolved oxygen in water by iodometric method[J]. Chemical Analysis and Meterage, 2008, 17(2): 54-56.
    [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 276-281. State Environmental Protection Administration of China. Monitoring and analytical methods of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2002: 276-281.
    [20] CHANG Y M, TANG R, DOU X J, et al. Transcriptome and expression profiling analysis of Leuciscus waleckii: An exploration of the alkali-adapted mechanisms of a freshwater teleost[J]. Molecular Biosystems, 2014, 10(3): 491-504.
    [21] 吕富, 潘鲁青, 王爱民, 等. 盐度对异育银鲫呼吸和氨氮排泄生理的影响[J]. 水生生物学报, 2010, 34(1): 184-189. LV F, PAN L Q, WANG A M, et al. Effects of salinity on oxygen consumption rate and ammonia excretion rate of allogynogemetic crucian carp[J]. Acta Hydrobiologica Sinica, 2010, 34(1): 184-189.
    [22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
    [23] HWANG P P, LEE T H. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comparative biochemistry and physiology Part A: Molecular & Integrative Physiology, 2007, 148(3): 479-497.
    [24] RAO G M M. Oxygen consumption of rainbow trout (Salmo gairdneri) in relation to activity and salinity[J]. Canadian Journal of Zoology, 1968, 46(4): 781-786.
    [25] 丁彦文, 李加儿. 平鲷Rhabdosargus sarba (Forskäl)幼鱼耗氧率的初步研究[J]. 湛江海洋大学学报, 2000, 20(3): 8-12. DING Y W, LI J E. A preliminary study on the oxygen consumption of fry of flat bream Rhabdosargus sarba (Forskäl)[J]. Journal of Zhanjiang Ocean University, 2000, 20(3): 8-12.
    [26] 王广军, 谢俊, 潘德博. 日本鳗鲡初孵仔鱼耗氧率的初步研究[J]. 海洋水产研究, 2001, 22(1): 52-55. WANG G J, XIE J, PAN D B. A preliminary study on the oxygen consumption rate of Japanese eel (Anguilla japonica) larva[J]. Marine Fisheries Research, 2001, 22(1): 52-55.
    [27] FURSPN P, PRANGE H D, GREENWALD L. Energetics and osmoregulation in the catfish, Ictalurus nebulosus and I. Punctatus[J]. Comparative Biochemistry and Physiology Part A: Physiology, 1984, 77(4): 773-778.
    [28] 郑伟刚, 张兆琪. 盐度和碱度对澎泽鲫幼鱼耗氧率和排氨率的影响[J]. 水产养殖, 2003, 24(6): 38-41. ZHENG W G, ZHANG Z Q. Effects of salinity and alkalinity on oxygen consumption rates and ammonia excretion rates of Carassius auratus Pengze Fingerlings[J]. Journal of Aquaculture, 2003, 24(6): 38-41.
    [29] 刘济源, 么宗利, 来琦芳, 等. 盐碱胁迫对青海湖裸鲤耗氧率、血浆渗透浓度和离子浓度的影响[J]. 生态学杂志, 2012, 31(3): 664-669. LIU J Y, YAO Z L, LAI Q F, et al. Effects of saline-alkali stress on the oxygen consumption and plasma osmolality and ion concentrations of Gymnocypris przewalskii[J]. Chinese Journal of Ecology, 2012, 31(3): 664-669.
    [30] 王楠, 常玉梅, 唐然, 等. 瓦氏雅罗鱼耐碱性状相关分子标记的筛选[J]. 中国水产科学, 2015, 22(6): 1105-1114. WANG N, CHANG Y M, TANG R, et al. Screening microsatellite markers associated with alkaline tolerance in Leuciscus waleckii[J]. Journal of Fishery Sciences of China, 2015, 22(6): 1105-1114.
    [31] WOOD C M, NAWATA C M, WILSON J M, et al. Rh proteins and NH4+-activated NH4+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish[J]. The Journal of Experimental Biology, 2013, 216(16): 2998-3007.
    [32] WILKIE M P, WOOD C M. The adaptations of fish to extremely alkaline environments[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1996, 113(4): 665-673.
    [33] WANG Y S, GONZALEZ R J, PATRICK M L, et al. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: A high altitude alkaline saline lake[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2003, 134(2): 409-421.
    [34] WRIGHT P A, WOOD C M. A new paradigm for ammonia excretion in aquatic animals: Role of Rhesus (Rh) glycoproteins[J]. The Journal of Experimental Biology, 2009, 212(15): 2303-2312.
    [35] 赵兰, 徐鹏, 孙效文. 碳酸盐碱度胁迫下鲤鱼氨排泄相关基因的差异表达[J]. 生物技术通报, 2013(4):185-193. ZHAO L, XU P, SUN X W. Ammonia eexcretion related genes expression of Common carp under the stress of carbonate alkalinity[J]. Biotechnology Bulletin, 2013(4): 185-193.
    [36] BRAUN M H, STEELE S L, PERRY S F. The responses of zebrafish (Danio rerio) to high external ammonia and urea transporter inhibition: Nitrogen excretion and expression of rhesus glycoproteins and urea transporter proteins[J]. The Journal of Experimental Biology, 2009, 212(23): 3846-3856.
    [37] BARIMO J F, SERAFY J E, FREZZA P E, et al. Habitat use, urea production and spawning in the gulf toadfish Opsanus beta[J]. Marine Biology, 2007, 150(3): 497-508.
    [38] MAYZAUD P. Respiration and nitrogen excretion of zooplankton. IV. The influence of starvation on the metabolism and the biochemical composition of some species[J]. Marine Biology, 1976, 37(1): 47-58.
    [39] IKEDA T. Nutritional ecology of marine zooplankton[J]. Memoirs of the Faculty of Fisheries Hokkaido University, 1974, 22(1): 1-97.
    [40] CONOVER R J, CORNER E D S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles[J]. Journal of the Marine Biological Association of the United Kingdom, 1968, 48(1): 49-75.
    [41] 范德朋, 潘鲁青, 马甡, 等. 温度对缢蛏(Sinonovacula constricta)耗氧率和排氨率的影响[J]. 青岛海洋大学学报, 2002, 32(1): 56-62. FAN D P, PAN L Q, MA S, et al. Effects of temperature on oxygen consumption rate and ammonia excretion rate of Sinonovacula constricta[J]. Journal of Ocean University of Qingdao, 2002, 32(1): 56-62.
    [42] KATSANEVAKIS S, STEPHANOPOULOU S, MILIOU H, et al. Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature[J]. Marine Biology, 2005, 146(4): 725-732.
    [43] DE ALMEIDA-VAL V M, GOMES A R C, LOPES N P. Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the amazon[J]. Fish Physiology, 2005, 21: 443-500.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何强,常玉梅,苏宝锋,孙博,孙效文,梁利群.碳酸盐碱度对达里湖瓦氏雅罗鱼耗氧率、氨氮排泄和排氨基因表达的影响[J].上海海洋大学学报,2016,25(4):551-558.
HE Qiang, CHANG Yumei, SU Baofeng, SUN Bo, SUN Xiaowen, LIANG Liqun. Effects of carbonate alkalinities on oxygen consumption, ammonia excretion and ammonia excretion gene expression in Leuciscus waleckii Dybowski[J]. Journal of Shanghai Ocean University,2016,25(4):551-558.

复制
分享
文章指标
  • 点击次数:4282
  • 下载次数: 3448
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-02-21
  • 最后修改日期:2016-03-16
  • 录用日期:2016-03-22
  • 在线发布日期: 2016-06-27
文章二维码