低盐胁迫对褐牙鲆成鱼血浆渗透压、皮质醇、生长激素和催乳素的影响
CSTR:
作者:
作者单位:

上海海洋大学水产与生命学院,上海海洋大学水产与生命学院

基金项目:

国家自然科学基金(41376134);高等教育博士点基金知识服务平台项目(20113104110002)


Effects of low salinity stress on plasma osmolality, cortisol, prolactin and growth hormone of Japanese flounder, Paralichthys olivaceus
Author:
Affiliation:

College of Fisheries and Life Science,Shanghai Ocean University,College of Fisheries and Life Science,Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    将褐牙鲆成鱼由盐度30直接转入盐度3的低盐海水(实验组)和30的海水(对照组)中,并在转移前0 h(空白组),转移后8 h、1 d、2 d、5 d、8 d和14 d采样,分析急性低盐胁迫对血浆渗透压、血浆皮质醇(COR)、催乳素(PRL)、生长激素(GH)及离子浓度的影响。结果显示,实验期间对照组中血浆的各项指标与空白组样品无差异;盐度3实验组中,渗透压、Na+、Cl-均在1~2 d下降至最低且显著低于对照组,随后在该水平上波动;K+逐渐上升,1 d到达最高值,2 d时回落但仍高于对照组,之后保持平衡;COR在转移至低盐后1 d时上升至2 d时下降并低于对照组;血浆GH在1 d时显著下降至最低,后有所回升,但低于对照组;PRL于1 d时下降至最低,2 d时逐渐上升,显著高于对照组。上述结果表明: 褐牙鲆成鱼具有成熟完善的渗透压调节机制,在急性低盐环境胁迫下,COR、PRL、GH等激素的共同作用能在短期内调整机体适应盐度变化,并建立新的内环境稳态。

    Abstract:

    Transferring adult Japanese flounder (Paralichthys olivaceus) directly from salinity 30 into salinity 3 and 30, effects of abrupt low salinity stress on plasma osmolality, cortisol(COR), prolactin(PRL), growth hormone(GH) were studied after 0 h, 8 h, 1 d, 2 d, 5 d, 8 d and 14 d, and the changes of Na+, K+ and Cl- in the plasma were also monitored. Results showed that, all plasma indicators had no significant changes between control group and 0h blank group; after transfer to salinity 3, plasma osmolality decreased in 8 h, continued to decline in 1 d, and then rose slightly in 2 d and then kept stable; the levels of Na+ and Cl- showed similar changes, decreased in 8h-1d, then stabilized; K+ gradually increased after transferring into salinity 3, then rose to the highest level in 1 d, while in 2 d it dropped to the level that was slightly higher than control group; the concentration of COR in plasma rose to the highest value in 1 d, then declined in 2 d, significantly lower than control group; PRL level reduced firstly then elevated 2 d,and it was significantly higher than the value in 30‰ seawater. Plasma GH in experimental group decreased in 1 d and then remained the lower level. As a euryhaline fish, Japanese flounder has strong adaptability to abrupt low salinity stress,and it could increase or decrease hormones rapidly, such as COR, PRL, GH, to re-establish a new internal environment homeostasis.

    参考文献
    [1] 朱元鼎, 张春霖, 成庆泰. 东海鱼类志[M]. 北京: 科学出版社, 1963: 277-278. ZHU Y D, ZHANG C L, CHENG Q T. Fishes Annals of East China Sea [M]. Beijing: Science Press, 1963: 277-278.
    [2] MINAMI T. The early life history of a flounder Paralichthys olivaceus in Wakasa bay, Japan Sea, Japan [J]. Bulletin of the Japanese Society of Scientific Fisheries, 1982, 48(11): 1581-1588.
    [3] TOMIYAMA T, YAMASHITA Y, TANAKA M. Occurrence of juvenile Japanese flounder Paralichthys olivaceus in brackish estuaries[J]. Estuarine, Coastal and Shelf Science, 2009, 85(4): 661-665.
    [4] BOLASINA S N, TAGAWA M, YAMASHITA Y. Changes on cortisol level and digestive enzyme activity in juveniles of Japanese flounder, Paralichthys olivaceus, exposed to different salinity regimes[J]. Aquaculture, 2007, 266(1/4): 255-261.
    [5] BRETT J R. 10 Environmental factors and growth[J]. Fish Physiology, 1979, 8: 599-675.
    [6] 谢志浩. 鱼类的渗透压调节[J]. 生物学通报, 2002, 37(5): 22-23. XIE Z H. Fish osmoregulation[J]. Bulletin of Biology, 2002, 37(5): 22-23.
    [7] PELIS R M, MCCORMICK S D. Effects of growth hormone and cortisol on Na+-K+-2Cl- cotransporter localization and abundance in the gills of Atlantic salmon[J]. General and Comparative Endocrinolgy, 2001, 124(2), 134-143.
    [8] MCCORMICK S D. Endocrine control of osmoregulation in teleost fish[J]. American Zoologist, 2001, 41(4): 781-794.
    [9] SAKAMOTO T, MCCORMICK S D. Prolactin and growth hormone in fish osmoregulation[J]. General and Comparative Endocrinology, 2006, 147(1): 24-30.
    [10] SAKAMOTO T, AMANO M, HYODO S, et al. Expression of prolactin-releasing peptide and prolactin in the euryhaline mudskippers (Periophthalmus modestus): prolactin-releasing peptide as a primary regulator of prolactin[J]. Journal of Molecular Endocrinologyl, 2005, 34, 825-834.
    [11] 潘鲁青, 唐贤明, 刘泓宇, 等. 盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响[J]. 海洋与湖沼, 2006, 37(1): 1-6. PAN L Q, TANG X M, LIU H Y, et al. Effects of salinity on plasma osmolality and gill Na+-K+-ATPase activity of juvinile Japanese flounder Paralichthys olivaceus [J]. Oceanologia et Limnologia Sinica, 2006, 37(1): 1-6.
    [12] 施兆鸿, 张晨捷, 彭士明, 等. 盐度对银鲳血清渗透压、过氧化氢酶及鳃离子调节酶活力的影响[J]. 水产学报, 2013, 37(11): 1697-1705. SHI Z H, ZHANG C J, PENG S M, et al. Effects of salinity on serum osmolality, catalase and gill ion-regulatory enzyme activities in silver pomfret[J]. Journal of Fisheries of China, 2013, 37(11): 1697-1705.
    [13] 徐力文, 刘广锋, 王瑞旋, 等. 急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响[J]. 应用生态学报, 2007, 18(7): 1596-1600. XU L W, LIU G F, WANG R X, et al. Effects of abrupt salinity stress on osmoregulation of juvenile Rachycentron canadum[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1596-1600.
    [14] SAKAMOTO T, UCHIDA K, YOKOTA S. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities[J]. Zoological Science, 2001, 18(9): 1163-1174.
    [15] LEBRETON G T O, BEAMISH F W H. The influence of salinity on ionic concentrations and osmolarity of blood serum in lake sturgeon, Acipenser fulvescens[J]. Environmental Biology of Fishes, 1998, 52(4): 477-482.
    [16] 曾霖, 雷霁霖, 刘滨,等. 盐度对大菱鲆幼鱼鳃Na+-K+-ATPase活力、血清离子浓度和激素水平的影响[J]. 动物学杂志, 2012, 49(3): 407-414.ZENG L, LEI J L, LIU B, et al. Effects of salinity on Na+-K+-ATPase activity in gills, and concentrations of ions and hormones in serum of juvenile turbot (Scophthalmus maximus)[J]. Chinese Journal of Zoology, 2012, 49(3): 407-414.
    [17] SCHWARZ D E, ALLEN P J. Effects of salinity on growth and ion regulation of juvenile alligator gar Atractosteus spatula[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2014, 169(3):44-50.
    [18] WENDELA A R, BONGA S E. The stress response in fish[J]. Physiological Reviews, 1997, 77(3): 591-625.
    [19] JUAN M M, RAULIL C, MARIA P M R. Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream[J]. General and Comparative Endocrinology, 2002, 129(2): 95-103.
    [20] 班红琴, 吴垠, 李阳,等. 盐度驯化过程中虹鳟血清渗透压、激素水平及离子组成的变化[J]. 大连水产学院学报, 2010, 25(6): 551-555.BAN H Q, WU Y, LI Y, et al. The changes in osmotic pressure, concentrations of hormones, and ion composition in serum of rainbow trout during salinity acclimnation[J]. Journal of Dalian Fisheries University, 2010, 25(6): 551-555.
    [21] MCCORMICK S D, REGISH A, O'DEA M F, et al. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+-K+-ATPase activity and isoform mRNA levels in Atlantic salmon[J]. General and Comparative Endocrinology, 2008, 157(1): 35-40.
    [22] MADSEN S S, NISHIOKA R S, BERN H A. Seawater acclimation in the anadromous striped bass, Morone saxatilis: strategy and hormonal regulation[J]. The Physiology of Migratory Fish Symp, 1996, 167-174.
    [23] TAKAHIRO S, TAKURA N, MOERI H et al. Relationships between gill Na+-K+-ATPase activity and endocrine and local insulin-like growth factor-I levels during smoltification of masu salmon (Oncorhynchus masou)[J]. General and Comparative Endocrinology, 2012, 178(2): 427-435.
    [24] SAKAMOTO T, SHEPHERD B S, MADSEN S S, et al. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost[J]. General and Comparative Endocrinology, 1997, 106(1):95-101.
    [25] KATHERINE D, SHUNSUKE M, HIROSHI K ,et al. Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel cat-fish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels [J]. General and Comparative Endocrinology, 2003, 133(3): 314-322.
    [26] BREVES J P, HASEGAWA S, FOX B K, et al. Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters[J]. General and Comparative Endocrinology, 2010, 167(1): 135-310.
    [27] TINE M, LORGERIL J, PANFILI J, et al. Growth hormone and prolactin-Ⅰ gene transcription in natural populations of the black-chinned tilapia Sarotherodon melanotheron acclimatised to different salinities[J]. Comparative Biochemistry and Physiology, Part B, 2007, 147(3): 541-549.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贾倩倩,吕为群.低盐胁迫对褐牙鲆成鱼血浆渗透压、皮质醇、生长激素和催乳素的影响[J].上海海洋大学学报,2016,25(1):71-77.
JIA Qianqian, L&#; Weiqun. Effects of low salinity stress on plasma osmolality, cortisol, prolactin and growth hormone of Japanese flounder, Paralichthys olivaceus[J]. Journal of Shanghai Ocean University,2016,25(1):71-77.

复制
分享
文章指标
  • 点击次数:4144
  • 下载次数: 3177
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-01-07
  • 最后修改日期:2015-06-10
  • 录用日期:2015-09-09
  • 在线发布日期: 2016-01-25
文章二维码