基于微波辐射计SSM/I的海面风速反演算法研究及应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市高校选拔培养优秀青年教师科研专项基金(SSC10008)


Study on algorithms for retrieving sea surface wind speed and its application based on microwave radiometer SSM/I
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海面风速是海洋环境的重要参数,微波辐射计是卫星监测海面风速的重要手段。通过微波辐射计SSM/I(Special Sensor Microwave/Imager)亮温与浮标实测风速建立的匹配数据集,利用人工神经网络构建海面风速反演模型。比较不同模型的反演效果,得出七通道单参数神经网络模型SANN(Singleparameter Artificial Neural Network )反演的效果和浮标实测风速较为接近,均方根误差RMSE(Root Mean Square Error)为1.40m/s。因此选择该模型反演全球的月平均风速,并将反演结果与NOAA产品风速比较。结果表明:两者在整体分布和纬度平均上非常接近,均方根误差为1.03m/s。可见,该算法用于海面风速反演还是可行的。

    Abstract:

    The sea surface wind speed is an important parameter of marine environment and satellite microwave radiometer is an important tool to monitor this parameter. In this paper, a model for retrieving the sea surface wind speed is developed using the artificial neural network (ANN), through the data sets generated between the microwave radiometer SSM/I brightness temperatures and the insitu buoy measurements. By comparing the retrieval results of different models, it is concluded that the result of the sevenchannel SANN retrieval model is closer to the buoy measured wind speed with the root mean square error (RMSE) of 1.40m/s. Therefore, this model is chosen to retrieve the global monthlyaverage wind speed, and the retrieval results are compared with the NOAA products. The results show that, both are very close in the overall and latitudeaverage distribution with the RMSE of 1.03 m/s. It can be seen that the algorithm for the sea surface wind speed retrieval is feasible.

    参考文献
    相似文献
    引证文献
引用本文

雷 林,陈新军,毛志华.基于微波辐射计SSM/I的海面风速反演算法研究及应用[J].上海海洋大学学报,2012,21(1):123-131.
LEI Lin, CHEN Xin-jun, MAO Zhi-hua. Study on algorithms for retrieving sea surface wind speed and its application based on microwave radiometer SSM/I[J]. Journal of Shanghai Ocean University,2012,21(1):123-131.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-01-09
  • 出版日期:
文章二维码