文章编号:1674-5566(2024)04-0888-12

DOI:10.12024/jsou.20230804300

拉尼娜年份下西北太平洋远东拟沙丁鱼的摄食生态

李金桧',胡贯宇^{1,2,3,4},赵振方',葛思羽',陈 龙',陈颖聪'

(1. 上海海洋大学海洋生物资源与管理学院,上海 201306; 2. 大洋渔业资源可持续开发教育部重点实验室,上海 201306; 3. 国家远洋渔业工程技术研究中心,上海 201306; 4. 农业农村部大洋渔业可持续利用重点实验室,上海 201306)

摘 要:根据2021年6—7月远洋渔业资源调查船"淞航"号在西北太平洋公海采集的远东拟沙丁鱼样本,测定其肌肉的碳、氮稳定同位素比值,利用GAM模型分析生物因子(体长)和非生物因子(纬度、海表温度、离岸距离、叶绿素 a质量浓度)对碳、氮稳定同位素的影响;同时,分析了远东拟沙丁鱼的营养生态位在不同性别、不同体长组间的差异。结果显示,在拉尼娜年份下,远东拟沙丁鱼肌肉的δ¹³C和δ¹⁵N在雌、雄间差异不显著,不同体长组间的δ¹³C和δ¹⁵N差异显著。GAM模型的结果显示,随着体长的增大,δ¹³C和δ¹⁵N呈现先减小后增大的趋势;δ¹³C随纬度的增大也呈现先减小后增大的趋势;δ¹⁵N与离岸距离(Distance to shelf break,DSB)、叶绿素 a质量浓度之间均呈负相关关系。不同体长组的生态位宽度不同,随着生长其位置发生了变化;雌、雄生态位的重叠率较大,100~160 mm雌、雄间生态位宽度相似,然而161~220 mm雌性生态位宽度明显大于雄性;与正常年份相比,拉尼娜年份下δ¹³C和δ¹⁵N值均较低。研究表明,远东拟沙丁鱼不同性别、体长组间的摄食生态。 **关键词:**远东拟沙丁鱼;摄食生态;稳定同位素;拉尼娜

中图分类号: S 932 文献标志码: A

远东拟沙丁鱼(Sardinops melanostictus)隶属 辐鳍鱼纲(Actinopterygii)鲱形目(Clupeiformes)鲱 科(Clupeidae)^[1],其种群广泛分布于西北太平洋、 地中海及南非各海域^[2-3]。远东拟沙丁鱼属暖温 性中上层鱼类,是世界上重要的中小型经济鱼种 之一^[4],其生长速度快、繁殖力强,一般两龄性成 熟^[5]。跟其他中上层鱼类一样,远东拟沙丁鱼也 具有集群、洄游等的生活习性^[1,6]。其位于海洋生 态系统的中上层,具有承上启下的作用,它既是 大型鱼类、哺乳动物、海鸟等的捕食对象,同时自 身主要捕食硅藻类、桡足类、小型鱼卵等^[7-8]。由 于亲潮黑潮冷暖流交汇的作用,西北太平洋海域 营养盐充足、生产力较高、饵料生物种类丰富,从 而形成了优良的经济渔场^[9]。相关研究表明,气 候的周期变动会影响海洋经济鱼类的资源捕捞 量^[10],拉尼娜事件会导致西北太平洋沿岸海域的海表温度(Sea surface temperature, SST)异常增高,使得初级生产力降低,尼诺指数对中西太平洋鲣单位捕捞努力量渔获量(Catch per unit effort, CPUE)的影响会滞后 0~2个月^[11]。 PETATAN等^[12]认为SST和净初级生产力变化是影响远东拟沙丁鱼栖息地变动的主要原因。 HIYAMA等^[13]研究发现栖息地温度与西北太平洋远东拟沙丁鱼生物量和幼鱼存活之间存在显著的负相关关系。杨超等^[14]研究结果显示随着SST上升,CPUE值的升高与北太平洋远东拟沙丁 鱼资源量增加有直接关联,YANG等^[15]发现远东 拟沙丁鱼常汇集于温度变化较小的海域,因此温度对远东拟沙丁鱼栖息地有一定影响。另外, SST上升对远东拟沙丁鱼的洄游模式、摄食分布

Copyright © Editorial Office of Journal of Shanghai Ocean University (CC BY-NC-ND 4.0)

收稿日期: 2023-08-28 修回日期: 2024-01-30

基金项目:农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1002);大洋渔业资源可持续开 发教育部重点实验室开放基金(A1-2006-23-200206);上海海洋大学青年教师科研启动项目(A2-2006-23-200308);上 海市高校特聘教授"东方学者"岗位跟踪计划(GZ2022011)

作者简介:李金桧(1998—),女,硕士研究生,研究方向为渔业生物学和生态学。E-mail:784951248@qq.com

通信作者: 胡贯宇, E-mail:gyhu@shou.edu.cn

版权所有 ©《上海海洋大学学报》编辑部(CC BY-NC-ND 4.0)

及种群波动也有一定影响,特别是异常气候事件 下的影响更为显著^[6]。因此,探究拉尼娜事件对 远东拟沙丁鱼栖息地变化和摄食习性的影响是 十分必要的。

目前,稳定同位素技术已广泛应用于鳀 (Engraulidae)^[16]、长蛇鲻(Saurida elongata)^[17]、 柔鱼 (Ommastrephes bartrami)^[18-19]、大青鲨 (Prionace glauca)^[20]等物种摄食习性及洄游路径 的研究。研究[17]表明,稳定同位素技术相比于 胃含物鉴定方法能够更完整地保留捕食者的摄 食信息。研究摄食习性可以判断鱼类的生长、 行为规律、种间关系以及资源量动态[21]。国内 外学者对远东拟沙丁鱼的年龄生长^[5]、摄食生 态[22-23]、资源量与环境关系[5,24]等生物学进行了 研究,但关于摄食生态的研究多用传统的胃含 物方法[25-29],用稳定同位素技术对其摄食习性的 研究甚少[30-31],且关于气候变化对摄食习性影响 的研究尚未见报道。因此,本研究根据西北太 平洋的远东拟沙丁鱼肌肉样本,通过分析碳、氮 稳定同位素技术来研究不同性别、不同体长组 间的摄食习性和摄食生态位差异。同时,结合 拉尼娜气候事件,探究远东拟沙丁鱼摄食习性、 栖息地对拉尼娜事件的响应,以期为研究中上 层小型鱼类在不同气候环境下生态系统中的摄 食生态位提供参考依据。

1 材料与方法

1.1 数据来源

1.1.1 样本来源

2021年为拉尼娜年份,远东拟沙丁鱼样本采 集时间为2021年6—8月,采集海域为38°59′N~ 43°00′N,150°30′E~161°48′E,共采集11个站点 (图1),每个站点所采集的样本均从渔获物中随 机取样,并对采集的样本进行冷冻处理保存运回 实验室。在本研究中,雌性样本为87尾,体长为 105~250 mm,雄性样本为83尾,体长为100~ 241 mm。研究总体长为100~250 mm,设置组 距为30 mm,将样本分成100~130 mm、131~ 160 mm、161~190 mm、191~220 mm和221~ 250 mm等5个体长组。

1.1.2 环境数据来源

SST和叶绿素 a 质量浓度(Chlorophyll-a, *Chl.* a)数据来自美国国家海洋和大气管理局网站 (http://apdrc.soest.hawaii.edu/las/v6/dataset),时间 分辨率为d,空间分辨率为0.5°×0.5°。

1.2 方法

1.2.1 生物学测定

实验室解冻后对采集的所有样品进行生物 学测量和观测,测量指标包括体长、体质量、性 别、性腺成熟度、摄食等级等。体长用量鱼板测 定,精确至1mm,体质量用天平测定,精确至1g。 通过对性腺的形状、外观及结构的分析来确定性 别。在远东拟沙丁鱼背鳍前端剪取约3 cm×3 cm 肌肉块,于塑封袋内-20℃冷冻保存。

1.2.2 稳定同位素分析

肌肉去除外层表皮并用超纯水清洗,在 -55℃的冷冻干燥机内干燥24h,之后用混合型 球磨仪研磨成粉末,称取1.0 mg粉末并加入到12 mL三氯甲烷-甲醇溶液(体积比为2:1)中浸泡24 h,以4000 r/min离心3 min,取下层粉末,40℃烘 箱干燥24h,最后用2 mL离心管装上脱脂后的粉 末并送入稳定同位素质谱仪(ISOPRIME100)和 元素分析仪(vario ISOTOPE cube)中进行稳定同 位素测定,质谱仪通过检测CO₂的¹³C/¹²C以及¹⁴N 的¹⁵N/¹⁴N,并与国际标准物(Pee dee belemnite, PDB)对比后计算出样品的δ¹³C值(δ¹³C的分析精 度<±0.2‰),与国际标准物(纯净空气中的N₂) 对比后计算出样品的δ¹⁵N 值(δ¹⁵N 的分析精 度<±0.3‰)。

计算公式:

$$\begin{split} \delta X &= \left[\left(R_{\text{sample}} / R_{\text{standard}} \right) - 1 \right] \times 1\ 000 \qquad (1) \\ \vec{x} 中 : X 为^{13} C 或^{15} N; R_{\text{sample}} 为^{13} C / {}^{12} C (或^{15} N / {}^{14} N) ; \\ R_{\text{standard}} 为标准值。 \end{split}$$

1.2.3 广义可加模型分析

广义可加模型(Generalized additive model, GAM)是一种非参数回归技术^[32],可以处理因变 量和自变量间的非线性和多元性关系^[33],因此在 建模复杂的生态系统研究方面广为使用^[34]。在 以往的研究中,海表面温度、上升流、离岸距离、 叶绿素 a 质量浓度、纬度、体长等被认为是解释稳 定同位素与栖息地、营养级间关系的主要因 子^[35-38]。本研究应用GAM模型建立了远东拟沙 丁鱼因变量(肌肉的δ¹³C、δ¹⁵N)和自变量(纬度、 体长、离岸距离、海表面温度、叶绿素 a 质量浓度) 间的关系:

 $I_{\rm SI} = s(X_{\rm Lat}) + s(X_{\rm BL}) + s(X_{\rm SST}) + s(X_{\rm DSB}) + s(X_{\rm ChLa}) + e$ (2)

式中:*I*_{SI}为测定的碳、氮稳定同位素(δ¹³C或 δ¹⁵N);*X*_{Lat}为采样点的纬度;*X*_{BL}为远东拟沙丁鱼的 体长;*X*_{SST}为采样点的海表面温度;*X*_{DSB}为采样点 的离岸距离;*X*_{ChLa}为采样点的叶绿素 a 质量浓度;*e* 为模型的误差。

采用方差膨胀因子(Variance inflation factor, VIF)对预测变量进行共线性检验,选择VIF检验 的临界值为3^[39]。将VIF检验后的有效预测变量 以不同的组合来进行GAM分析,基于赤池信息准 则(Akaike information criterion, AIC)来衡量模型 的拟合优度^[40],从而获得最优模型。

1.3 数据处理

本文所有同位素值的方差均保持不变,且符 合正态分布,所以采用t检验分析雌、雄δ¹³C、δ¹⁵N 值的差异,利用ANOVA检验西北太平洋远东拟 沙丁鱼稳定同位素不同体长组的差异。

采用方差膨胀因子(VIF)对预测变量进行共 线性检验,筛选出适宜的预测变量用于GAM的建 立,将肌肉δ¹³C、δ¹⁵N与适宜的预测变量建立关 系,基于AIC值选取最优拟合模型,探讨远东拟沙 丁鱼的栖息地变动与摄食习性关系。

生态位图及重叠率。依据LAYMAN等^[41]的 方法利用标准椭圆面积(Standard ellipse areas, SEA)法计算生态位的宽度以及生态位在不同性 别、不同体长组的重叠率。

2 结果

2.1 碳、氮稳定同位素在性别间的差异

通过对远东拟沙丁鱼肌肉碳、氮稳定同位 素进行统计分析,结果显示, δ^{13} C的范围为 -22.41‰~-17.88‰(表1和图2),平均值为 -20.05‰±0.79‰, δ^{15} N的范围为 6.43‰~ 10.85‰,平均值为8.70‰±1.13‰;雌性个体 δ^{13} C 平均值为-19.99‰±0.92‰, δ^{15} N平均值为8.75‰ ±1.18‰;雄性个体 δ^{13} C平均值为-20.12‰ ±0.72‰, δ^{15} N平均值为8.65‰±1.09‰。利用t检 验分析雌、雄间碳、氮稳定同位素的差异性,结 果显示, δ^{13} C和 δ^{15} N在性别间均不存在显著性 差异(P>0.05)。

	表1	西北太平洋远东拟沙丁鱼雌、雄肌肉稳定同位素差异性分析	
Tab. 1	Differential analysis	of stable isotopes of muscle in female and male Sardinops melanostictus in Northwes	st

Pacific Ocean

	$\delta^{13}C$				$\delta^{15}N$			
性别Sex	最大值	最小值	均值		最大值	最小值	均值	D
	Maximum/%o	Minimum/%o	imum/%o Mean±SD/%o P		Maximum/%o	Minimum/%o	Mean±SD/%	P
雌性Female	-17.88	-22.41	-19.99±0.92	0.27(10.85	6.43	8.75±1.18	0.575
雄性Male	-18.26	-21.9	-20.12±0.72	0.276	10.37	6.68	8.65±1.09	0.575

2.2 碳、氮稳定同位素在体长组间的差异

统计结果显示,δ¹³C和δ¹⁵N在不同体长组间 呈现先下降后上升的趋势(表2、图3)。在100~ 190 mm,随着体长的增大,δ¹³C和δ¹⁵N缓慢下降; 而191~250 mm体长范围间,δ¹³C和δ¹⁵N 呈现增长 的趋势(图3)。ANOVA分析表明,100~130 mm 与161~190 mm和191~220 mm的δ¹³C和δ¹⁵N存在 显著性差异(P<0.05),131~160 mm与161~190 mm和191~220 mm的δ¹³C也存在显著性差异(P<0.05),131~160 mm与191~220 mm和221~250 mm的δ¹⁵N同样存在显著性差异(P<0.05)。

体长组	样本数 —— Sample size/尾	δ^{15}	N/%o	δ ¹³ C/%ο		
Body length group/ mm		范围 Range	平均值±标准差 Mean±SD	范围 Range	平均值±标准差 Mean±SD	
100~130	36	8.17~10.37	9.35±0.64	-20.46~-18.32	-19.95±0.39	
131~160	45	6.64~10.55	8.74±1.04	-21.25~-19.68	-20.30±0.43	
161~190	59	6.43~10.85	7.84±0.98	-22.41~-18.23	-20.39±0.83	
191~220	24	7.47~10.32	9.50±0.72	-20.88~-17.88	-19.25±0.78	
221~250	6	8.95~10.47	9.84±0.56	-19.02~-18.26	-18.67±0.29	

表 2 西北太平洋远东拟沙丁鱼不同体长组的碳、氮稳定同位素比值 Tab. 2 δ¹³C and δ¹⁵N values of *Sardinops melanostictus* in different body length groups in Northwest Pacific Ocean

2.3 GAM 模型

基于预测变量的共线性检验结果,在5个预 测变量中,VIF值均小于3,满足VIF检验的临界 值为3^[42]的条件,所以均可取。将5个预测变量 建立 $C_{s}^{1}+C_{s}^{2}+C_{s}^{4}+C_{s}^{5}=31$ 种不同变量组合的模 型。选择AIC值最小的模型作为最佳拟合模型。 δ^{13} C的最佳预测变量组合为 $X_{La}+X_{BL}(表3)$,模型 的偏差解释率为50.0%(表4); δ^{15} N的最佳预测变 量组合为 $X_{BL}+X_{SST}+X_{DSB}+X_{ChLa}(表3)$,模型的偏差解 释率为54.2%;且这些变量对远东拟沙丁鱼肌肉 δ^{13} C、 δ^{15} N有极显著的影响(P<0.01,表4)。 δ¹³C和δ¹⁵N值随预测变量的变化趋势较为显 著(图4)。δ¹³C随体长的增加呈现先减小后增大 的趋势,在体长为170 mm时出现了1个极小值, 在220~250 mm时呈现下降的趋势(图4a);δ¹³C随 纬度的增加整体上呈先减小后增大的趋势,在 42°N附近为极小值(图4b);δ¹⁵N在体长为100~ 120 mm和180~250 mm时呈现正相关关系,在体 长为120~180 mm时呈现负相关关系(图4c);δ¹⁵N 与海表面温度的增加呈现先增加后减小的趋势, 在30°C时出现了一个极大值(图4d);δ¹⁵N与离岸 距离、叶绿素a呈现负相关关系(图4e和4f)。

表 3 远东拟沙丁鱼肌肉稳定同位素的广义加性模型 (GAM)的AIC值选择 Tab.3 AIC values selection for the Generalized

Additive Model (GAM) of stable

isotopes of muscle in Sardinops melanostictus

变量	碳稳定同位素	氮稳定同位素		
Variables	δ^{13} C/‰	$\delta^{15}N/ {\rm \%o}$		
X _{Lat}	319.625	496.812		
$X_{\rm BL}$	328.479	435.033		
$X_{\rm SST}$	331.390	475.744		
$X_{\rm DSB}$	310.469	429.921		
X _{Chl.a}	360.921	483.358		
$X_{\rm Lat}$ + $X_{\rm BL}$	300.416	421.789		
$X_{\rm Lat}$ + $X_{ m SST}$	308.577	435.946		
$X_{\rm Lat}$ + $X_{ m DSB}$	311.395	444.467		
$X_{\rm Lat}$ + $X_{Chl.a}$	310.961	450.877		
$X_{\rm BL}$ + $X_{\rm SST}$	319.751	421.723		
$X_{\rm BL}$ + $X_{\rm DSB}$	311.600	421.422		
$X_{\rm BL}$ + $X_{Chl.a}$	317.214	423.564		
$X_{\rm SST}$ + $X_{\rm DSB}$	308.087	455.018		
$X_{\rm SST}$ + $X_{Chl.a}$	305.618	436.660		
X_{DSB} + $X_{Chl.a}$	321.245	458.331		
$X_{\rm BL}$ + $X_{\rm SST}$ + $X_{\rm DSB}$	301.473	414.036		
$X_{\rm BL}$ + $X_{\rm SST}$ + $X_{Chl.a}$	300.711	412.669		
$X_{\rm BL}$ + $X_{\rm SST}$ + $X_{\rm DSB}$ + $X_{Chl.a}$	301.735	409.901		
$X_{\rm BL}$ + $X_{\rm DSB}$ + $X_{Chl.a}$	311.806	411.580		
$X_{\rm SST}$ + $X_{\rm DSB}$ + $X_{Chl.a}$	308.342	438.554		
X_{Lat} + X_{BL} + X_{SST}	301.853	415.252		
X_{Lat} + X_{BL} + X_{DSB}	308.087	455.018		
$X_{\rm Lat}$ + $X_{\rm BL}$ + $X_{Chl.a}$	301.598	423.469		
X_{Lat} + X_{BL} + X_{SST} + X_{DSB}	302.577	412.270		
X_{Lat} + X_{BL} + X_{SST} + $X_{Chl.a}$	300.913	414.344		
X_{Lat} + X_{BL} + X_{DSB} + $X_{Chl.a}$	302.719	413.208		
$X_{\text{Lat}} + X_{\text{BL}} + X_{\text{SST}} + X_{\text{DSB}} + X_{Chl.a}$	302.462	411.231		
X_{Lat} + X_{SST} + X_{DSB}	305.941	425.071		
$X_{\text{Lat}} + X_{\text{SST}} + X_{Chl.a}$	304.385	424.699		
$X_{\rm Lat} {+} X_{\rm SST} {+} X_{\rm DSB} {+} X_{Chl.a}$	305.895	426.261		
$X_{\text{Lat}} + X_{\text{DSB}} + X_{ChLa}$	310.133	427.701		

2.4 营养生态位

不同体长组的生态位宽度不同,随着生长其 位置发生了变化,且雄性的191~220 mm组均不 与其他体长组重叠(图5);雌、雄生态位的重叠 率较大,在92.69%到100.00%之间。在生态位 宽度方面,100~160 mm 雌、雄间生态位宽度相 似,然而161~220 mm 雌性生态位宽度明显大于 雄性,雌性的生态位宽度是雄性的两倍左右(图 6)。

3 讨论与分析

本研究通过碳氮稳定同位素技术对西太平 洋远东拟沙丁鱼的摄食习性进行分析。结果显 示不同体长组之间的雌、雄样本δ¹³C、δ¹⁵N值存在 显著差异(P<0.05),表明各体长的远东拟沙丁鱼 的雌、雄个体食物来源和营养级不同。营养生态 位宽度可以反映空间维度上的分布范围和均匀 程度,营养生态位重叠率可以反映物种间食物组 成的相似性程度^[43]。100~160 mm 雌、雄间生态 位重叠率较高,这表明100~160 mm的雌、雄个体 栖息在相似的海域且摄食单一的食物[44],这导致 该体长的雌、雄个体竞争激烈。本研究结果与 WATANABE等^[45]相似,西北太平洋的雌、雄远东 拟沙丁幼鱼一直在相似海域生长,从而导致其 雌、雄生态位宽度相似,生态位重叠率高。161~ 220 mm 雌性生态位宽度明显大于雄性且生态位 重叠率较低。随着生长,远东拟沙丁鱼雌性比雄 性摄食更高级的饵料生物,满足卵巢发育和产卵 需求[46]。王开立等[47]研究蓝圆鲹的生态位发现, 雌性个体的δ¹⁵N值显著高于雄性,说明雌鱼通过 摄取更高营养级的饵料来满足卵巢发育的要求。 陈静等[31]在研究鸢乌贼的摄食习性时发现,雌性 δ¹⁵N值显著高于雄性。以上结果表明雌、雄个体 在对食物营养级的选择上有所不同,雌性个体在 生长阶段和性腺发育过程中需要更多的能量累 积。在海洋生态系统中,δ¹⁵N富集程度相对稳定, 可用于确定生物体的营养水平^[48],δ¹³C值可反映 生物所处环境中初级生产者(基线浮游植物)的 稳定同位素特征,进而可以指示其栖息地^[49]。结 果显示,δ¹³C、δ¹⁵N随体长的增加呈现先减小后增 大的趋势(图4a,4c),δ¹³C、δ¹⁵N在140 mm 左右体 长减少。这可能是100~160 mm体长的远东拟沙 丁鱼存在激烈的种内竞争,随着生长,远东拟沙 丁鱼迁移到更深的水域,然而该海域初级生产者 营养水平较低[50],且该体长范围内的远东拟沙丁 鱼摄食器官未发育完整,只能摄食浮游生物,这 导致了δ¹⁵N、δ¹³C值的下降^[51]。161~220 mm体长 组的δ¹³C、δ¹⁵N增加,可能是该体长的远东拟沙丁 鱼游泳能力增强,并迁移到初级生产力充足的海 域。该体长范围内的远东拟沙丁鱼摄食器官发 育完整,会主动摄食高营养级的生物,这导致了 $δ^{13}C$ 、 $δ^{15}N$ 的增加。

表4 远东拟沙丁鱼肌肉碳、氮稳定同位素的 GAM 模型统计输出结果 Tab.4 Statistical outputs of the generalized additive models for δ¹³C and δ¹⁵N stable isotopes of muscle for *Sardinops melanostictus*

musce for suranops meanosucius							
稳定同位素 Isotopes	变量 Variables	自由度 Degree of freedom	F	Р	偏差解释率 DE/%		
\$ ¹³ C	Lat	2.912	11.862	< 0.01	50.00		
0 L	BL	3.922	6.536	< 0.01	30.00		
	BL	3.869	20.793	< 0.01			
\$15m	SST	2.189	9.650	< 0.01	54.20		
0 1	DSB	1	14.261	< 0.01			
	Chl.a	1	7.032	< 0.01			

图4 碳、氮稳定同位素的反应曲线

图 5 西北太平洋远东拟沙丁鱼相同性别不同体长组营养生态位 Fig. 5 Nutritional niches of different body length groups of the same sex of Sardinops melanostictus in Northwest Pacific Ocean

Fig. 6 Nutritional niches of different body length groups of different sex of Sardinops melanostictus in Northwest Pacific Ocean

本研究发现,海域环境会影响远东拟沙丁鱼的摄食习性。拉尼娜年份下远东拟沙丁鱼 δ^{13} C为-22.41‰~-17.88‰, δ^{15} N为 6.43‰~10.85‰。 而在正常年份下,相关研究者测出相似体长远东 拟沙丁鱼 δ^{13} C为-18.40‰~-15.00‰, δ^{15} N为 9.4‰~12.70‰^[52-53],经过对比发现,拉尼娜年份 下远东拟沙丁鱼的 δ^{13} C、 δ^{15} N值均低于正常气候 条件下相似体长组的 δ^{13} C、 δ^{15} N值^[54]。可能的原 因是拉尼娜气候事件会导致西北太平洋沿岸海 域的海表温度(SST)异常增高,使得初级生产力 降低,且食物来源多样性较少^[55]。

环境因子对远东拟沙丁鱼 $\delta^{13}C$ 、 $\delta^{15}N$ 值有一 定影响,本研究发现, $\delta^{13}C$ 值随纬度的升高而降 低,并在42°N~43°N间轻微波动(图4b), YASUNANAKA等^[48]研究发现 $\delta^{13}C$ 值大小与溶解 无机碳(Dissolved inorganic carbon, DIC)浓度呈 负相关关系,西北太平洋高纬度海域的DIC浓度 高于低纬度海域。此外,39°N为黑潮延伸区,该 海域食物网基线高, $\delta^{13}C$ 值高,随着纬度升高,黑 潮延伸流的影响降低^[56]。42°N~43°N海域的海 洋生物受千岛寒流的影响^[57],造成了远东拟沙丁 鱼 $\delta^{13}C$ 值的波动。在该海域其他鱼种也发现了

类似的结果,秋刀鱼的 $δ^{13}$ C值随着纬度升高而降 低,这可能是由于黑潮支流和千岛寒流共同影响 导致的结果。结果显示,δ¹⁵N与离岸距离呈负相 关的线性关系(图4e),离岸距离越近,初级生产 力越高,海域的海洋生物种类越丰富[18,58],远东拟 沙丁鱼更容易获取营养级高的饵料,δ¹⁵N越高。 温度是影响 $\delta^{15}N$ 值重要的因子之一,随着温度的 升高,远东拟沙丁鱼δ¹⁵N值升高。温度因子会引 起鱼类洄游路径改变,鱼体内生理激素发生紊 乱,鱼体免疫防御体系功能混乱^[59]。随着环境温 度的升高,大麻哈鱼机体代谢率逐渐增强,主动 摄食高营养级生物,摄食行为更活跃。 HANDELAN 等^[55]和 BJORNSSON 等^[60]研究大马 哈鱼 (Oncorhynchus keta) 和大西洋鳕 (Gadus morhua)同样表明,温度对其摄食确有显著影响, 在一定范围内温度越高,鱼类的摄食速率越快、 摄食范围越广,鱼类δ¹⁵N值越高。结果显示,δ¹⁵N 与叶绿素 a 呈负相关关系(图 4f),这与杨超等^[61] 和BODE等^[62]的研究结果一致,可能是叶绿素a 和溶氧及丰富度呈负相关关系^[63],叶绿素 a 质量 浓度越高,海域的含氧量越低,饵料生物发育缓 慢,导致饵料生物越低,从而降低δ¹⁵N的值。

现有研究已证明稳定同位素技术在海洋生 物摄食领域作用明显,但仍存在一定的局限性, 例如其同位素基线较难确定[4]。在复杂的海洋 生态系统中,准确的同位素基线是研究食物网碳 源、营养级的前提条件[65],而特定化合物(氨基 酸)稳定同位素分析(Compound-Specific Isotopic Analysis of Amino Acids, CSIA-AA)则能较好地 解决以上问题。近些年来,已有少量研究使用 CSIA-AA 对远东拟沙丁鱼摄食分析进行补充。 例如,GIMENEZ等^[66]量化了地中海西北部3个区 域不同季节欧洲沙丁鱼(Sardina pilchardus)肌肉 中的氮稳定同位素值以及特定化合物(氨基酸) 稳定同位素值,研究发现,肌肉中氮稳定同位素 值的变化主要是由同位素的基线所驱动的,利 用氨基酸稳定同位素可以同时估算基线的变化 以及营养水平的变化。DNA 条形码技术(DNA barcoding)是21世纪兴起的一项快速准确鉴定 物种的技术[46],由于鱼类胃中不可避免地出现 传统胃含物分析法难以辨认的食物碎屑,而 DNA 序列分析法可以较好地对其进行补充,因 此DNA条形码技术已被广泛应用于食性分析等 领域[66]。

4 总结与展望

本文基于碳、氮稳定同位素技术探究拉尼娜 年份下西北太平洋远东拟沙丁鱼不同性别、体长 组间 $\delta^{13}C$ 、 $\delta^{15}N$ 差异,利用GAM模型建立了 $\delta^{13}C$ 和 δ¹⁵N与纬度、体长、海表温度、离岸距离和叶绿素 a之间的关系,探究了拉尼娜年份对远东拟沙丁 鱼的栖息地变化和洄游的影响,同时研究了不同 体长组间雌雄生态位的关系。研究发现,相同体 长组中性别间δ¹³C、δ¹⁵N差异不显著,不同体长组 间δ¹³C、δ¹⁵N均呈现先减少后增大的趋势,环境因 子对远东拟沙丁鱼 $\delta^{13}C$ 、 $\delta^{15}N$ 影响较为复杂,不同 体长组的生态位宽度不同,随着生长其位置发生 了变化;雌、雄生态位的重叠率较大,100~160 mm 雌、雄间生态位宽度相似,然而161~220 mm 雌性 生态位宽度明显大于雄性。拉尼娜事件会使海 洋环境因子发生变化,从而影响远东拟沙丁鱼的 摄食生态。目前远东拟沙丁鱼摄食生态的研究 仍较缺乏,今后的研究可以结合脂肪酸分析和特 定化合物(氨基酸)稳定同位素分析技术进一步 探究远东拟沙丁鱼的摄食生态。

参考文献:

- [1] 韦晟,李富国.远东拟沙丁鱼的生活习性和资源变动
 [J].国外水产,1986(1):41-44.
 WEI S, LI F G. Life habits and resource changes of Sardinops melanosticta [J]. Foreign Aquatic Products, 1986(1):41-44.
- [2] FURUICHI S, NIINO Y, KAMIMURA Y, et al. Timevarying relationships between early growth rate and recruitment in Japanese sardine [J]. Fisheries Research, 2020, 232: 105723.
- [3] DOPOLO M, VANDER LINGEN C, MOLONEY C. Stagedependent vertical distribution of pelagic fish eggs on the western Agulhas Bank, South Africa [J]. African Journal of Marine Science, 2005, 27(1): 249-256.
- [4] NAKAI Z. Studies relevant to mechanisms underlying the fluctuation in the catch of the Japanese sardine, Sardinops melanosticta[J]. Japanese Journal of Ichthyology, 1962, 9 (1/6): 1-115.
- [5] 杨超,赵国庆,韩海斌,等.西北太平洋公海远东拟沙 丁鱼渔业生物学特征[J].海洋渔业,2024,46(1):20-31.
 YANG C, ZHAO G Q, HAN H B, et al. Analysis of

biological characteristics of Sardinops sagax in the high seas of the Northwest Pacific Ocean [J]. Marine Fishery, 2024, 46(1): 20-31.

[6] 王靓.西北太平洋主要小型中上层鱼类资源量对大尺 度气候-海洋环境变化的响应研究[D].上海:上海海洋 大学,2021.

> WANG L. Study on the response of major small pelagic fish resource in the Northwest Pacific to large scale climatemarine environmental changes [D]. Shanghai: Shanghai Ocean University, 2021.

- [7] 钱世勤,胡雅竹.东海外海远东拟沙丁鱼摄食习性的研究[J].海洋渔业,1993(4):151-154.
 QIAN S Q, HU Y Z. A study on the feeding behaviour of Japanese pilchard, *Sardinops melanosticta*, in the off coast of the East China Sea [J]. Marine Fisheries, 1993 (4): 151-154.
- [8] BARANGE M, COETZEE J, TAKASUKA A, et al. Habitat expansion and contraction in anchovy and sardine populations [J]. Progress in Oceanography, 2009, 83 (1/ 4): 251-260.
- [9] 崔国辰,朱文斌,戴乾,等.西北太平洋远东拟沙丁鱼 渔场时空分布及其与环境因子关系研究[J].海洋湖沼 通报,2022,44(5):110-116. CUIGC, ZHUWB, DAIQ, et al. Temporal and spatial distribution of *Sardinops sagax* fishing ground in the Northwest Pacific and its relationship with environmental factors [J]. Transactions of Oceanology and Limnology, 2022,44(5):110-116.
- [10] BEAL C M, GERBER L N, THONGROD S, et al. Marine

microalgae commercial production improves sustainability of global fisheries and aquaculture[J]. Scientific Reports, 2018, 8(1): 15064.

[11] 陈洋洋,陈新军. 厄尔尼诺/拉尼娜现象对中西太平洋
 鲣资源丰度的影响[J]. 上海海洋大学学报, 2017, 26
 (1): 113-120.

CHEN Y Y, CHEN X J. Influence of El Nino /La Nina on the abundance index of skipjack in the western and central Pacific Ocean [J]. Journal of Shanghai Ocean University, 2017, 26(1): 113-120.

- PETATÁN-RAMÍREZ D, OJEDA-RUIZ M Á, SÁNCHEZ-VELASCO L, et al. Potential changes in the distribution of suitable habitat for Pacific sardine (*Sardinops sagax*) under climate change scenarios [J]. Deep Sea Research Part II : Topical Studies in Oceanography, 2019, 169-170: 104632.
- [13] HIYAMA Y, YODA M, OHSHIMO S. Stock size fluctuations in chub mackerel (*Scomber japonicus*) in the East China Sea and the Japan/East Sea [J]. Fisheries Oceanography, 2002, 11(6): 347-353.
- [14] 徐洁,陈新军,丁琪,等.水温上升对西北太平洋柔鱼 栖息地的影响[C]//2014年中国水产学会学术年会论文 摘要集.长沙:中国水产学会,2014:346.

XU J, CHEN X J, DING Q, et al. Effect of sea surface temperature increase on potential habitat of *Ommastrephes bartramii* in the Northwest Pacific Ocean [C]//2014 Academic Annual Meeting of China Fisheries Society. Changsha: China Society of Fisheries, 2014: 346.

[15] 徐雯,杨蕊,陈淦,等.基于胃含物和碳、氮稳定同位素 研究浙江南部近海蓝圆鲹的摄食生态[J].应用生态学 报,2022,33(11):3097-3104.

XU W, YANG R, CHEN G, et al. Feeding ecology of *Decapterus maruadsi* in the southern coastal area of Zhejiang based on stomach contents and stable isotope analysis [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 3097-3104.

- [16] 王静,蒋日进,胡翠林,等.基于胃含物分析和稳定同 位素技术研究鳀的摄食生态[J].应用生态学报,2021, 32(6):2035-2044.
 WANG J, JIANG R J, HU C L, et al. Feeding ecology of *Engraulis japonicus* based on stomach contents and stable isotope[J]. Chinese Journal of Applied Ecology,2021,32 (6):2035-2044.
- [17] 高元新,隋吴志,任晓明,等.基于胃含物和稳定同位 素研究海州湾长蛇鲻的摄食习性[J].应用生态学报, 2020,31(12):4277-4283.

GAO Y X, SUI H Z, REN X M, et al. Feeding habits of *Saurida elongata* in Haizhou Bay, Shandong, China, based on stomach contents and stable isotope [J]. Chinese Journal of Applied Ecology, 2020, 31 (12) : 4277-4283

- [18] 贡艺.基于内壳稳定同位素信息的秘鲁外海茎柔鱼摄 食与洄游研究[D].上海:上海海洋大学,2015.
 GONG Y. The study on foraging strategies and migration patterns of Jumbo squid(*Dosidicus gigas*) off Peru based on thestable isotopic information in gladius [D]. Shanghai: Shanghai Ocean University, 2015.
- [19] 张字美.基于碳氮稳定同位素的南海鸢乌贼摄食生态 与营养级研究[D].湛江:广东海洋大学,2014.
 ZHANG Y M. Feeding habits and trophic level of purpleback flyingsquid, *Sthenoeuthis oualaniensis* based on carbon andnitrogen stable isotope analysis in the South China Sea[D]. Zhanjiang: Guangdong Ocean University, 2014.
- [20] 王洁.基于脊椎骨稳定同位素比值的大青鲨摄食生态 研究[D].上海:上海海洋大学,2016.
 WANG J. Feeding ecology of blue sharkbased on stable isotope ratio ofvertebrae [D]. Shanghai: Shanghai Ocean University,2016
- [21] 薛莹,金显仕,张波,等.黄海中部小黄鱼的食物组成和摄食习性的季节变化[J].中国水产科学,2004,11(3):237-243.
 XUE Y, JIN X S, ZHANG B, et al. Diet composition and seasonal variation in feeding habits of small yellow croaker *Pseudosciaena polyactis* Bleeker in the Central Yellow Sea
 [J]. Journal of Fishery Sciences of China, 2004, 11(3): 237-243.
- [22] CARDONA L, MARTÍNEZ-IÑIGOL, MATEO R, et al. The role of sardine as prey for pelagic predators in the western Mediterranean Sea assessed using stable isotopes and fatty acids[J]. Marine Ecology Progress Series, 2015, 531: 1-14.
- [23] MASSKI H, DE STEPHANIS R, LABONNE M, et al. Exploring fidelity of Sardines (Sardina pilchardus) to feeding grounds in the Atlantic Moroccan waters using stable isotope analyses (C, N) and otolith microchemistry [J]. Frontiers in Marine Science, 2015, 2, doi: 10.3389/ conf. FMARS. 2015. 03. 00164.
- [24] 刘思源,张衡,杨超,等.西北太平洋远东拟沙丁鱼与日本鲭种群动态特征及其与环境因子关系研究进展
 [J].大连海洋大学学报,2023,38(2):357-368.
 LIU S Y, ZHANG H, YANG C, et al. Relationship between stock dynamics and environmental variability for Japanese sardine (*Sardinops sagax*) and chub mackerel (*Scomber japonicus*) in the Northwest Pacific Ocean: a review[J]. Journal of Dalian Ocean University, 2023, 38 (2): 357-368.
- [25] ZORICA B, KEČVČ, VIDJAK O, et al. Feeding habits and helminth parasites of sardine (*S. pilchardus*) and anchovy (*E. encrasicolus*) in the Adriatic Sea [J]. Mediterranean Marine Science, 2015, 17(1): 216-229.
- [26] 薛梅,朱国平.南极磷虾胃含物分析进展及其在食性研

究中的应用[J]. 中国水产科学, 2021, 28(9): 1238-1250.

XUE M, ZHU G P. Stomach content analysis and feeding habit of the Antarctic krill *Euphausia superba*: a review [J]. Journal of Fishery Sciences of China, 2021, 28(9): 1238-1250.

- [27] 唐峰华,戴澍蔚,樊伟,等.西北太平洋公海日本鲭 (Scomber japonicus)胃含物及其摄食等级研究[J].中国 农业科技导报,2020,22(1):138-148. TANG F H, DAI S W, FAN W, et al. Study on stomach composition and feeding level of chub mackerel in the Northwest Pacific[J]. Journal of Agricultural Science and Technology, 2020, 22(1):138-148.
- [28] 孙耀, 于森, 刘勇, 等. 现场胃含物法测定鲐的摄食与 生态转换效率[J]. 水产学报, 2003, 27(3): 245-250.
 SUN Y, YU M, LIU Y, et al. Determination of food consumption and ecological conversion efficiency of *Pneumatophorus japonicus* by stomach contents method[J].
 Journal of Fisheries of China, 2003, 27(3): 245-250.
- [29] 孙耀,刘勇,张波,等. Eggers 胃含物法测定赤鼻棱鳀的摄食与生态转换效率[J]. 生态学报, 2003, 23(6):
 1216-1221.
 SUN Y, LIU Y, ZHANG B, et al. Food consumption,

growth and ecological conversion efficiency of *Thryssa* kammalensis, determined by eggers model in laboratory [J]. Acta Ecologica Sinica, 2003, 23 (6): 1216-1221

- [30] 操亮亮,刘必林,李建华.基于稳定同位素技术的东南 太平洋公海茎柔鱼摄食生态分析[J].大连海洋大学学 报,2022,37(1):120-128.
 CAO L L, LIUB L, LI J H. Analysis of feeding ecology of jumbo squid *Dosidicus gigas* in the high seas of southeast Pacific Ocean based on stable isotope technology [J]. Journal of Dalian Ocean University, 2022, 37(1): 120-128.
- [31] 陈静,陆化杰,王芮,等.基于碳氮稳定同位素的西北
 印度洋鸢乌贼摄食习性研究[J].海洋与湖沼,2022,53
 (5):1250-1257.
 CHEN J, LU H J, WANG R, et al. Feeding ecology of

Sthenoteuthis oualaniensis based on carbon and nitrogen stable isotope analysis in the Northwest Indian Ocean [J]. Oceanologia et Limnologia Sinica, 2022, 53 (5) : 1250-1257.

- [32] SHERWOOD G D, ROSE G A. Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web[J]. Estuarine, Coastal and Shelf Science, 2005, 63(4): 537-549.
- [33] GUISAN A, EDWARDS JR T C, HASTIE T. Generalized linear and generalized additive models in studies of species distributions: setting the scene [J]. Ecological Modelling,

2002, 157(2/3): 89-100.

- [34] HASTIE T, TIBSHIRANI R. Exploring the nature of covariate effects in the proportional hazards model [J].
 Biometrics, 1990, 46(4): 1005-1016.
- [35] FANG Z, THOMPSON K, JIN Y, et al. Preliminary analysis of beak stable isotopes (δ^{13} C and δ^{15} N) stock variation of neon flying squid, *Ommastrephes bartramii*, in the North Pacific Ocean [J]. Fisheries Research, 2016, 177: 153-163.
- [36] PETHYBRIDGE H R, YOUNG J W, KUHNERT P M, et al. Using stable isotopes of albacore tuna and predictive models to characterize bioregions and examine ecological change in the SW Pacific Ocean [J]. Progress in Oceanography, 2015, 134: 293-303.
- [37] MARTÍNEZ-RINCÓNR O, ACOSTA-PACHÓNT A.
 Effect of environmental factors, fish size, and baseline on carbon and nitrogen stable isotope variability in *Thunnus alalunga*, *T. albacares*, and *T. obesus* in the Pacific Ocean
 [J]. Progress in Oceanography, 2022, 203: 102786.
- [38] FLEMING A H, CLARK C T, CALAMBOKIDIS J, et al. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current [J]. Global Change Biology, 2016, 22(3): 1214-1224.
- [39] SAGARESE S R, FRISK M G, CERRATO R M, et al. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (*Squalus acanthias*) in the Northeast (US) shelf large marine ecosystem [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71(6): 847-877.
- [40] PLANQUE B, BELLIER E, LAZURE P. Modelling potential spawning habitat of sardine (*Sardina pilchardus*) and anchovy (*Engraulis encrasicolus*) in the Bay of Biscay [J]. Fisheries Oceanography, 2007, 16(1): 16-30.
- [41] LAYMAN C A, ARRINGTON D A, MONTANA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure? [J]. Ecology, 2007, 88 (1): 42-48.
- [42] HIJMANS R J, WILLIAMS E, VENNES C. Geosphere: spherical trigonometry [J]. R package Version, 2019, 1 (10).
- [43] 吴映明,唐以杰,黄更生.广东饶平海山河口区红树林 潮沟鱼类时空生态位[J/OL].中山大学学报(自然科学版),2024:1-9.(2024-01-08).https://doi.org/10. 13471/j.cnki.acta.snus.2023E047.
 WU Y M, TANG Y J, HUANG G S, et al. Spatialtemporal niche of mangrove tidal gully fish in the estuary area of Haishan Town, Raoping County, Guangdong Province [J/OL]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024: 1-9. (2024-01-08). https://doi.org/10.13471/j.cnki.acta.snus.2023E047.
- [44] MURO-TORRESV M, AMEZCUA F, GREEN L, et al.

Ontogenetic shifts in feeding habits of orangemouth weakfish (*Cynoscion xanthulus*) : from estuarine benthic feeder to marine nektivore top predator [J]. Marine Ecology, 2023, 44(1): e12735.

- [45] WATANABE Y, KUROKI T. Asymptotic growth trajectories of larval sardine (*Sardinops melanostictus*) in the coastal waters off western Japan [J]. Marine Biology, 1997, 127(3): 369-378.
- [46] TAKAHASHI M, WATANABE Y, KINOSHITA T, et al. Growth of larval and early juvenile Japanese anchovy, *Engraulis japonicus*, in the Kuroshio - Oyashio transition region [J]. Fisheries Oceanography, 2001, 10(2): 235-247.
- [47] 王开立,龚玉艳,陈作志,等.基于稳定同位素技术的 南海北部蓝圆鲹的营养生态位[J].生态学杂志,2022, 41(4):724-731.

WANG K L, GONG Y Y, CHEN Z Z, et al. Trophic niche of *Decapterus maruadsi* in the northern South China Sea as revealed by stable isotope techniques [J]. Chinese Journal of Ecology, 2022, 41(4): 724-731.

- [48] YASUNAKAS, NOJIRI Y, NAKAOKA SI, et al. Monthly maps of sea surface dissolved inorganic carbon in the North Pacific: basin-wide distribution and seasonal variation[J]. Journal of Geophysical Research: Oceans, 2013, 118(8): 3843-3850.
- [49] LORRAIN A, GRAHAM B S, POPPB N, et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific oceans [J]. Deep SeaResearch Part II : Topical Studies in Oceanography, 2015, 113: 188-198.
- [50] MORELLO E B, ARNERI E. Anchovy and sardine in the Adriatic Sea—an ecological review [M]//GIBSON R N, ATKINSON R J A, GORDON J D M. Oceanography and Marine Biology. Boca Raton: CRC Press, 2009: 221-268.
- [51] MOUNIRA, ALAHYANE H, CHOUIKH N E, et al. Habitats and characteristics of Sardina pilchardus, off the Moroccan Atlantic coast [J]. Annals of Marine Science, 2022, 6(1): 7-20.
- [52] OHSHIMO S, HIRAOKA Y, SUYAMA S, et al. Geographical differences in stable isotope ratios and fatty acid and lipid signatures of chub mackerel, *Scomber japonicus*, in waters around Japan [J]. Bulletin of Marine Science, 2022, 98(3): 247-270.
- [53] LINDSAY D J, MINAGAWA M, MITANI I, et al. Trophic shift in the Japanese anchovy *Engraulis japonicus* in its early life history stages as detected by stable isotope ratios in Sagami Bay, Central Japan [J]. Fisheries Science, 1998, 64(3): 403-410.
- [54] 温健, 陆鑫一, 余为, 等. 秘鲁外海茎柔鱼栖息地适宜 性年代际变动[J]. 海洋学报, 2020, 42(6): 36-43.
 WEN J, LU X Y, YU W, et al. Decadal variations in

habitat suitability of *Dosidicus gigas* in the Southeast Pacific Ocean off Peru [J]. Haiyang Xuebao, 2020, 42 (6): 36-43.

- [55] HANDELAND S O, IMSLAND A K, STEFANSSON S O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts [J]. Aquaculture, 2008, 283(1/4): 36-42.
- [56] 肖戈.西北太平洋日本鲭渔场预报模型构建与对比研究[J].上海:上海海洋大学,2022.
 XIAO G. Construction and comparison of fishing ground forecast model of chub mackerel (*Scomber japonicus*) in Pacific Northwest [D]. Shanghai: Shanghai Ocean University, 2022.
- [57] DEMER D A, ZWOLINSKI J P, BYERS K A, et al. Prediction and confirmation of seasonal migration of Pacific sardine (*Sardinops sagax*) in the California Current Ecosystem[J]. Fishery Bulletin, 2012, 110(1): 52-70.
- [58] NEWSOME S D, CLEMENTZ M T, KOCH P L. Using stable isotope biogeochemistry to study marine mammal ecology[J]. Marine Mammal Science, 2010, 26(3): 509-572.
- [59] 高淳仁,王印庚,马爱军,等.温度对大菱鲆幼鱼生长、成活率和体内蛋白酶活性的影响[J].海洋水产研究,2006,27(6):33-36.
 GAO C R, WANG Y G, MA A J, et al. The effects of temperature on growth, survival rate and proteasesactivities of juvenileturbot (*Scophthal musmaximus*)[J]. Marine Fisheries Research, 2006, 27(6): 33-36.
- [60] BJÖRNSSON B, STEINARSSON A, ÁRNASON T. Growth model for Atlantic cod (*Gadus morhua*): effects of temperature and body weight on growth rate [J]. Aquaculture, 2007, 271(1/4): 216-226.
- [61] 杨超,张衡,韩海斌,等.北太平洋远东拟沙丁鱼渔场 时空分布及其最适环境特征[J].渔业科学进展,2023, 44(4):99-110.
 YANG C, ZHANG H, HAN H B, et al. Spatio-temporal distribution of *Sardinops sagax* in the North Pacific: optimal environmental characteristics [J]. Progress in Fishery Sciences, 2023, 44(4):99-110.
- [62] BODE A, ALVAREZ-OSSORIOM T, VARELA M. Phytoplankt on and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes[J]. Marine Ecology Progress Series, 2006, 318: 89-102.
- [63] 赵静,章守宇,汪振华,等.基于GAM模型的鱼类群落 多样性分布及影响因素[J].生态学杂志,2013,32 (12):3226-3235.
 ZHAO J, ZHANG S Y, WANG Z H, et al. Fish community diversity distribution and its affecting factors based on GAM model [J]. Chinese Journal of Ecology,

- [64] POPP B N, GRAHAM B S, OLSON RJ, et al. Insight into the trophic ecology of yellowfin tuna, *Thunnus albacares*, from compound-specific nitrogen isotope analysis of proteinaceous amino acids[J]. Terrestrial Ecology, 2007, 1: 173-190.
- [65] 陈玲,王凯,周曦杰,等.岛礁水域海藻场食物网基准 生物的选择[J].海洋渔业,2016,38(4):364-373.
 CHEN L, WANG K, ZHOU X J, et al. Investigation on

food web's isotopic baselinein typical reef ecosystemseaweed bed [J]. Marine Fisheries, 2016, 38(4): 364-373.

[66] GIMÉNEZ J, ALBO-PUIGSERVER M, LAIZ-CARRIÓN R, et al. Trophic position variability of European sardine by compound-specific stable isotope analyses [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2023, 80(5): 761-770.

Feeding Ecology of Sardinops melanostictus in Northwest Pacific Ocean in La Niña Year

LI Jinhui¹, HU Guanyu^{1,2,3,4}, ZHAO Zhenfang¹, GE Siyu¹, CHEN Long¹, CHEN Yingcong¹

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;
 Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;
 National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China; 4. Key Laboratory of Sustainable Utilization of Oceanic Fisheries, Ministry of Agricultiure and Rural Affairs, Shanghai 201306, China)

Abstract: Sardinops melanostictus is mainly distributed in Northwest Pacific Ocean, which is significantly affected by climate change. The carbon and nitrogen stable isotope ratios of the muscles of Japanese sardines from the Northwest Pacific Ocean were measured based on samples taken by the ocean-going fishery resources survey ship "Songhang" in the high seas of the Northwest Pacific Ocean between June and July 2021. The GAM model was then used to examine the effects of both biotic (body length) and abiotic (Latitude, sea surface temperature, offshore distance, chlorophyll-a) factors on the stable nitrogen isotopes; The differences in the trophic niche among sex and body length groups were also analyzed in Japanese sardines in Northwest Pacific Ocean. The results showed that there was no significant difference in muscle $\delta^{13}C$ and $\delta^{15}N$ between males and females during La Niña years. However, both $\delta^{13}C$ and $\delta^{15}N$ differed among body length groups. The GAM model's results showed that as body length increases, both δ^{13} C and δ^{15} N exhibited a trend of first decreasing and then increasing; δ^{13} C also exhibits this trend with increasing latitude; δ^{15} N exhibits a negative correlation with both offshore distance and chlorophyll-a. The overlap rate between female and male niche is generally high, with a similar niche width between females and males ranging from 100 to 160 mm. The width of the ecological niche varied across the length groups, and its position changed with growth. However, compared to males, females have substantially broader niches, ranging from 161 to 220 mm. In contrast to usual years, the La Niña year's readings for δ^{13} C and δ^{15} N are all low. The study demonstrates that the feeding ecology of Japanese sardines in Northwest Pacific Ocean varies depending on sex and body length, and that changes in the marine environmental elements under La Niña events affected the feeding ecology of Japanese sardines.

Key words: Sardinops melanostictus; feeding ecology; stable isotopes; La Niña

^{2013, 32(12): 3226-3235.}