Vol. 13, No. 2 June 2004 文章编号:1004-7271(2004)02-0146-05 # 淡水鱼鱼皮胶原蛋白的提取 傅燕凤,沈月新,杨承刚,张 渊 (上海水产大学食品学院,上海 200090) 摘 要:研究了用有机酸(醋酸、柠檬酸、乳酸)对几种主要的淡水鱼,鲢(Hypophthalmichthys molitrix),鳙(Aristichthys nobilis),草鱼(Clenopharyngodon idellus)鱼皮胶原蛋白进行提取。研究发现,鲢、鳙、草鱼鱼皮的蛋白质含量分别约为 25.9%、23.6%、29.8%,羟脯氨酸含量分别为 1.8%、1.9%、2.3%。结果表明,鲢、鳙鱼皮经 2.5% NaCl 溶液(1:10), 草鱼鱼皮经 5% NaCl 溶液(1:10), 温度 5% 左右,12h 磁力搅拌处理两次,除去的可溶性杂蛋白分别占原总蛋白的 5.9%、6.7%、9.1%。鱼皮再经加酸(1:30), 溶胀、均质处理后,即可得到鱼皮胶原蛋白的粗提取液,鲢、草鱼鱼皮的酸提取回收率以醋酸为最高,分别为 78.9%、84.1%,鳙鱼皮以柠檬酸为最高,约为 82.0%。粗提液再经抽滤、盐析、透析,最后经冷冻干燥,可得到纯度较高的胶原蛋白制品。三种鱼皮胶原蛋白制品的色泽洁白程度以草鱼的为最好,鲢和鳙略差些。 关键词 鱼皮 胶原蛋白 提取 中图分类号 S985.1 文献标识码:A # Isolation of collagen from freshwater fish skin FU Yan-feng SHEN Yue-xin ,YANG Cheng-gang , ZHANG Yuan (College of Food Science , Shanghai Fisheries University ,Shanghai 200090 ,China) Abstract: This paper has studied the isolation of collagen from skin of three major freshwater fishes, silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis) and grass carp (Clenopharyngodon idellus) by organic acid (acetic acid , citric acid and lactic acid). Skin of silver carp , bighead carp and grass carp have been found to contain 25.9% 23.6% 29.8% protein , and 1.8% ,1.9% 2.3% hydroxyproline , respectively. It was established that , the fish skin was stirred two times with 2.5% or 5% NaCl solution at a ratio of material to solvent of 1:10 at about 5°C for 12h , about 5.9% ,6.7% ,9.1% soluble non-collagenous protein could been separated from skin of silver carp , bighead carp and grass carp , then by homogenizing with acid at a ratio of material to solvent of 1:30 , about 78.9% ,84.1% ,82.0% of collagen from skin of silver carp , grass carp and bighead carp could be extracted by acetic acid or citric acid. The extract was purified further by vacuum filtering , salting-out , dialyzing and lyophilizing. Among the collagen preparations from these three kinds of fish skin , the whiteness was highest for collagen preparation obtained from skin of grass skin , next from skin of silver carp and bighead carp. Key words : fish skin ; collagen ; isolation ixey words aish skili ,conagen ,isolation 胶原蛋白是构成动物支持组织的结构蛋白质,其提取制品已广泛应用于医药、保健、食品加工、化妆品等众多领域,迄今其制品主要是从一些陆生哺乳动物如牛、猪等的皮肤提取。近年来,由于疯牛病和 收稿日期 2003-12-10 作者简介:傅燕凤(1975-),女,上海市人,硕士研究生,专业方向为水产品贮藏与加工。 口蹄疫的影响,人们开始寻求从水产动物如鱼类中提取胶原蛋白。我国淡水鱼产量丰富,2002年仅淡水养殖鱼的产量即为 1694 万吨。因此,如能从淡水鱼加工废弃物中提取胶原蛋白加以利用,既能促进淡水鱼加工废弃物的综合利用、降低淡水鱼加工的成本,又将是一种新型胶原资源的开发。目前,国外学者对鱼类胶原蛋白的提取研究主要围绕海洋鱼类展开,曾经有 Maria Sadowska 等 11 对波罗的海鳕鱼,Alicia S C 等 21 对鳕鱼、Pilar Montero 等 $^{3-61}$ 对欧洲无须鳕、鳟鱼、鲽鱼、四班鳞鲆,E Gordon Young 等 71 对鳕鱼的鱼皮胶原蛋白进行提取。国内尚未见淡水鱼鱼皮胶原蛋白提取的文献报导。本文研究了用三种有机酸,醋酸、柠檬酸、乳酸,对三种主要的淡水鱼,鲢(Hypophthalmichthys molitrix),鳙(Aristichthys nobilis),草鱼(Clenopharyngodon idellus)的鱼皮进行胶原蛋白的提取。 # 1 材料与方法 #### 1.1 原料 新鲜活鱼经去头、去内脏后,对剖成二片式,然后将鱼片放入鱼肉采取机进行采肉,并实现鱼肉与鱼皮的分离。将分离得到的鱼皮剪去鱼鳍、刮去鱼鳞、并将与鱼皮粘连的鱼肉也一同刮擦除去。然后将干净的鱼皮剪成小碎片,混合后放入 PE 食品保鲜袋中于 – 20℃冻藏备用。 #### 1.2 非胶原蛋白的去除 将解冻的碎鱼皮分别加入浓度为 1%、2.5%、5%、7.5% 氯化钠溶液(1:10 W/V ,下同) ,于 5% 连续搅拌 24h ,或搅拌 12h 后换液、继续搅拌 12h ,用尼龙纱过滤 ,得滤液。测滤液中的蛋白质浓度和羟脯氨酸含量。用蒸馏水(1:10)水洗样品并过滤 ,重复三次。 #### 1.3 胶原蛋白的提取 去除杂蛋白的鱼皮分别加入 0.5M 醋酸、0.1M 柠檬酸、0.1M 乳酸进行溶胀(1:20),然后均质 3min,用酸(1:10)洗涤均质器 将洗涤液并入均质液中,即得到鱼皮胶原蛋白的酸粗提取液。将酸粗提取液连续搅拌,1h、2h、3h、4h、24h 后,分别定量取样、真空抽滤、测滤液中的蛋白质浓度和羟脯氨酸含量。 ### 1.4 胶原蛋白的提纯 将滤液中加入固体氯化钠至 2.5M 进行搅拌盐析 ,然后冷冻离心(6000r/min ,10min , 10°) 将得到的沉淀复溶于酸中 ,装入透析袋中于 10° 透析外液为蒸馏水 ,至用 0.1M $AgNO_3$ 检查外液中无 Cl 时终止透析。并对滤液和透析液于 $200 \sim 310m$ 进行紫外定性扫描 检测提取的胶原蛋白的纯度。 # 1.5 胶原蛋白含量的测定(以羟脯氨酸计)8] 按照 ISO3496:1978(E)方法 测定羟脯氨酸。 # 1.6 蛋白质浓度的测定[9] 采用微量双缩脲法。 #### 1.7 鱼皮组分的测定 水分 直接干燥法 粗蛋白 凯氏定氮法 脂质 索氏抽提法 总糖 苯酚硫酸法 灰分 高温灼烧法。 ## 2 结果和讨论 # 2.1 鱼皮的一般组成成分 经测定 鱼皮的一般组成成分如表 1 所示。 鲢、鳙、草鱼鱼皮的蛋白质含量相当高,其中,以草鱼为最高,其次为鲢、最低为鳙。三者的蛋白质含量均高于各自相应鱼肉的蛋白质含量。三种鱼皮的羟脯氨酸含量分别为鲢 1.8%、鳙 1.9%、草鱼 2.3% 乘以各自的换算系数 11.1^[11],得出三种鱼皮的胶原蛋白含量为鲢 20.0%、鳙 21.1%、草鱼 25.5%,分别占总蛋白的 77%、89%、86%。可见,胶原蛋白是鱼皮的主要蛋白质。 | ± . | 4·t | 4本 | #4. | 4 + 1 1 | 4 + 4 | あり 7日 一十 | ナハ | |----------------|------|-----|-----|--------------------|-------|----------|------| | ₹ 1 | 田1生. | 画書. | 古田. | 田内利 | 田以出 | 一般组成: | ከሀንግ | | | | Tab.1 The con | (%) | | | | |----|----|---------------|------|------|------|------| | 鱼 | 种 | 粗蛋白 | 粗脂肪 | 水分 | 总糖 | 灰分 | | 鲢 | 鱼皮 | 25.9 | 0.73 | 71.1 | 0.28 | 0.24 | | | 鱼肉 | 17.8 | 3.6 | 77.8 | 0 | 1.2 | | 鳙 | 鱼皮 | 23.6 | 0.20 | 74.8 | 0.24 | 0.42 | | | 鱼肉 | 15.3 | 2.2 | 76.5 | 4.7 | 1.3 | | 草鱼 | 鱼皮 | 29.8 | 0.75 | 68.4 | 0.21 | 0.22 | | | 鱼肉 | 16.6 | 5.2 | 77.3 | 0 | 1.1 | 注:1.鱼肉的数据参见文献[10]; 2.SC ,BC ,GC 分别代表鲢、鳙、草鱼 ,下同。 #### 2.2 非胶原蛋白的去除 在 5 ℃、连续搅拌 24h 的条件下 不同的盐浓度对鱼皮中总蛋白和胶原蛋白的溶出情况如图 1 所示。 由图可见、鲢、鳙、草鱼鱼皮的最佳脱杂蛋白盐浓度分别为 2.5%、2.5%、5%。 盐浓度对鲢、鳙、草鱼鱼皮溶出总蛋白和胶原蛋白的影响 Fig. 1 Effect of concentration of NaCl solution on the solubility of total protein and collagen of skins of SC, BC and GC 对于鲢鱼皮而言, 当氯化钠溶液浓度为 2.5%时, 溶出总蛋白最多, 占总粗蛋白的 4.54%, 而胶原蛋 白溶出较少 其损失占总胶原蛋白的 1.18% ;当氯化钠溶液浓度为 5%时 ,总溶出蛋白占总粗蛋白的 4.50% ,而胶原蛋白溶出最多 ,其损失占总胶原蛋白的 2.25%。 因此 ,以2.5% 为最佳脱杂蛋白浓度。 对鳙鱼皮而言, 当氯化钠溶液浓度为 2.5% 时, 总溶出蛋白占总粗蛋白的 5.16%, 胶原蛋白损失占 总胶原蛋白的 0.91% ; 当氯化钠溶液浓度为 5%时, 总溶出蛋白占总粗蛋白的 5.41%, 胶原蛋白损失占 总胶原蛋白的 1.19%。根据上述实验得到鳙鱼皮胶原蛋白含量为 89% 说明鳙鱼皮的杂蛋白含量较 少 鳙鱼皮胶原蛋白损失率在氯化钠浓度为 5%时大于浓度为 2.5%的 因此 选择以 2.5% 为鳙鱼皮最 佳脱杂蛋白浓度。 而对于草鱼皮而言,当氯化钠溶液浓度为2.5%时,总溶出蛋白占总粗蛋白的5.34%,而胶原蛋白 损失占总胶原蛋白的 3.00% , 当为 5%时, 总溶出蛋白占总粗蛋白的 7.29%, 而胶原蛋白损失却较少, 占 总胶原蛋白的 2.49%。很明显 5%氯化钠溶液浓度的脱杂蛋白的效果优于 2.5%的 ,因此 ,选择以 5% 为草鱼皮最佳脱杂蛋白浓度。 实验还比较了连续搅拌 24h 处理 1 次和 12h 处理 2 次对鱼皮中总蛋白和胶原蛋白的溶出情况,如 图 2 所示。 各种鱼皮在 12h 处理 2 次的条件下 各鱼皮的总溶出蛋白均较 24h 处理 1 次有所增加 :而各鱼皮胶 原蛋白的损失也较 24h 处理 1 次略有增加,但其增加率远低于总溶出蛋白的增加率。因此,12h 处理 2 次脱杂蛋白的效果优于 24h 处理 1 次。 #### 2.3 胶原蛋白的提取 在本实验条件下 酸对胶原蛋白的提取率不随提取时间的延长而增加 ,如表 2、表 3 所示。同种鱼皮在不同提取时间的酸粗提液的蛋白质浓度无显著差别 ,羟脯氨酸含量也比较接近。 图 2 处理次数对鱼皮溶出总蛋白和胶原蛋白的影响 $Fig. 2 \quad Effect \ of \ stirring \ times \ on \ the \ solubility \ of \\ total \ protein \ and \ collagen \ of \ skins \ of \ SC \ , \ BC \ and \ GC$ 表 2 不同提取时间鱼皮酸粗提液中的蛋白质浓度 Tab.2 Protein concentration in crude collagen solutions at different stirring time (mg/mL) | n+27 | 鲢 | | | 鳙 | | | 草鱼 | | | |-----------|------|------|------|------|-------|------|------|------|------| | 时间 -
L | 醋酸 | 柠檬酸 | 乳酸 | 醋酸 | 柠檬酸 | 乳酸 | 醋酸 | 柠檬酸 | 乳酸 | | h – | | | | | 蛋白质浓度 | | | | | | 1 | 5.82 | 6.00 | 5.78 | 5.29 | 5.79 | 4.54 | 5.96 | 6.05 | 6.02 | | 2 | 6.69 | 5.96 | 6.18 | 6.80 | 7.49 | 4.89 | 6.25 | 5.99 | 5.98 | | 3 | 5.68 | 6.26 | 5.01 | 6.05 | 7.34 | 7.42 | 6.72 | 5.96 | 5.32 | | 4 | 6.18 | 6.15 | 5.66 | 5.57 | 7.40 | 6.77 | 6.08 | 5.85 | 6.82 | | 24 | 5.24 | 5.94 | 6.18 | 4.46 | 7.55 | 5.54 | 5.52 | 5.09 | 4.99 | 表 3 不同提取时间鱼皮酸粗提液中的羟脯氨酸浓度 Tab.3 Hydroxyproline content in crude collagen solutions at different stirring time (mg/mL) | n+ /= | 鲢 | | | 鳙 | | | 草鱼 | | | | |-------|--------|------|------|------|------|------|------|------|------|--| | 时间 - | 醋酸 | 柠檬酸 | 乳酸 | 醋酸 | 柠檬酸 | 乳酸 | 醋酸 | 柠檬酸 | 乳酸 | | | h – | 羟脯氨酸浓度 | | | | | | | | | | | 1 | 0.58 | 0.52 | 0.56 | 0.61 | 0.60 | 0.45 | 0.49 | 0.74 | 0.38 | | | 2 | 0.60 | 0.45 | 0.37 | 0.60 | 0.77 | 0.63 | 0.68 | 0.69 | 0.54 | | | 3 | 0.46 | 0.44 | 0.45 | 0.59 | 0.79 | 0.61 | 0.76 | 0.51 | 0.56 | | | 4 | 0.44 | 0.43 | 0.41 | 0.39 | 0.75 | 0.61 | 0.30 | 0.64 | 0.43 | | | 24 | 0.54 | 0.50 | 0.59 | 0.31 | 0.60 | 0.47 | 0.35 | 0.42 | 0.36 | | 前人的方法一般都是先将鱼皮原料直接捣碎,然后加酸后需连续搅拌 24h 甚至更长时间来完成对胶原蛋白的提取¹⁻⁷。而事实上,由于鱼皮的韧性很强,若直接用高速组织捣碎器加工,往往由于捣碎时间极长、捣碎器转子发热而造成胶原蛋白变性。因此,本实验采用将已去除杂蛋白的鱼皮先加酸静置溶胀,后高速均质分散的处理,即可完成胶原蛋白的酸提取这一步工艺,不必再进行 24h 的搅拌处理。本实验研究结果进一步表明,淡水鱼鱼皮胶原的溶解性相当好,较之陆生动物皮肤更易提取和应用。此外,本实验方法对胶原蛋白的提取回收率也较高,其中,鲢、草鱼鱼皮的酸提取回收率以醋酸为最高,分别为 78.9%、84.1% 鳙鱼皮以柠檬酸为最高,约为 82.0%。 #### 2.4 胶原蛋白的纯化 酸粗提取液滤液及其透析液经紫外扫描在 200~230nm 之间有强烈吸收,即存在胶原蛋白的特征吸收,在 280nm 附近基本无吸收,即没有杂蛋白的特征吸收,因此提取的胶原蛋白纯度较高。如图 3 所示(限于篇幅,只列出部分图谱代表)。 该纯度鉴定方法是基于一般的蛋白含有芳香族氨基酸 在 250~290nm 有吸收。 透析液经冷冻干燥 得到的胶原蛋白制品色泽洁白 无酸味 略有轻微鱼腥味。就色泽而言 同种酸 的制品中以草鱼皮的制品色泽最为洁白 鲢鱼皮和鳙鱼皮制品的洁白程度略差些。 图 3 鲢、鳙、草鱼鱼皮的醋酸胶原蛋白提取液经一次纯化后的紫外扫描图 Fig. 3 The spectrums of collagen solutions of skin of SC, BC and GC extracted by acetic acid after one purification #### 2.5 鱼皮色素的去除 鱼皮中存在的一定的色素细胞,在本实验中,色素细胞的去除主要依靠两步工艺。一是靠氯化钠溶液在去除大部分水溶性和盐溶性杂蛋白的同时,去除部分水溶性色素。二是靠真空抽滤来去除酸粗提取液中的残留色素。 # 3 结语 醋酸、柠檬酸、乳酸这三种酸都可以用来提取鱼皮胶原蛋白。 当总加酸量为 30 倍量时 ,已去除杂蛋白的鱼皮经溶胀、均质 ,即可完成胶原蛋白的酸提取这一步工艺。 鱼皮胶原蛋白含量高,杂蛋白含量低,一般经一次纯化即可得到纯度较高的制品。制品的色泽以草鱼皮最为洁白,鲢鱼皮和鳙鱼皮略差些。制品无酸味,略带鱼腥味。 本实验所用原料由本院中日合作研究室陈舜胜教授帮助提供 在此表示万分感谢。 #### 参考文献: - [1] Maria S, Ilona K, Celina N. Isolation of collagen from the skins of Balitic cod JJ. Food Chemistry, 2003, 81 257 262. - [2] Alica S C, Maria E P, Alicia N F. Isolation of soluble collagen from Hake skir[J]. Journal of Aquatic Food Product Technology, 1997, 61(1): 65 77. - [3] Pilar M, Javier B, Javier T, et al. Characterization of Hake and trout collager[J]. J Agric Food Chem, 1990, 38:504 609. - [4] Pilar M, Francisco J C, Javier B. Effect of pH ad the presence of NaCl on some hydration properties of collagenous material from trout muscle and skir[J]. J Sci Food Agric, 1991, 54:137 146. - [5] Montero P , Alvarez C , Mahti M A , et al . Plaice skin collagen extraction and functional properties J J. J Food Sci ,1995 60(1):1-3. - [6] Montero P, Gomez G M. Extracting conditions for megrim skin collagen affect functional properties of the resulting gelatin [J]. J Food Sci 2000, 65(3) 434 438. - [7] Gordon E , Lorimer J W. The acid-soluble collagen of cod skir[J]. Archives of Biochemistry and Biophysics , 1960 , 88 373 381. - [8] ISO3496 (E). Meat and meat products-determination of (L-)hydroxyproline content (reference method IS). - [9] 万建荣 洪玉菁,奚印慈,等.水产食品化学分析手册[M].上海:上海科学技术出版社,1993.170-172. - [10] 中国预防医学科学院营养与食品卫生研究所.食品成分表 M].北京:人民出版社,1991.38-40. - [11] 日本食品工业学会《食品分析法》编辑委员会、食品分析法(下]M].重庆:四川科学技术出版社,1986.74-77.