JOURNAL OF SHANGHAI FISHERIES UNIVERSITY

文章编号:1004-7271(2003)01-0087-05 ·研究简报·

深水双锥型网箱的阻力估算

The estimation of the hydrodynamic resistance of two cones shaped submersible cages

夏泰淳,张健

(上海水产大学海洋学院,上海 200090)

XIA Tai-chun , ZHANG Jian

(Ocean College , Shanghai Fishery University , Shanghai 200090 , China)

关键词 深水网箱 双锥形 阻力 理论计算

Key words submersible cage; wto cones shaped; hydrodynamic resistance; theoretical calcuation 中图分类号 S972 文献标识码: A

估算方法以流体力学基本理论为基础,对深水网箱的阻力其估算方法进行了探讨。网箱在风浪中 的水动力学问题是相当复杂的,从主要问题着手,以理想化的模型代替复杂多变的模型;其计算方法和 得到的一系列公式,倘若能和网箱模型试验的实测结果进行对照的话,那么经过适当修正以后,其结论 将是相当有益的。

1 深水网箱的简介

美式双锥形网箱由于上下对称稳定性好,抗风 浪能力强,在近海养殖业中已在逐步引进。网箱在 水中结构如图1所示^[1]。在海流的作用下,其阻力 主要来自于浮杆(直杆),浮环(圆环)和网衣这三部 分组成^[2],而其它称之为附件阻力等。倘若其阻力 能准确估算的话,那么对于网箱的锚泊装置的计算 和网箱本身在风浪流中的结构强度、刚度等问题的 解决均会带来决定性的影响。

由于网箱的存在,水流流速显然会发生变化, 但考虑到海况工作条件的复杂多变,流速的变化往 往有一个范围,而在实用计算中往往从有效的角度 出发,一般总是取一个概率最大的流速场,然后在 此基础上从安全的角度出发,相应在结构上定出一

Fig.1 The construction of the two cones shaped submersible cages
1 辐条 2 平台 3 网衣 4 浮杆 5 浮环 6 锚定系统 7 沉子

个合理的安全系数。显然在计算中暂不考虑网箱内流场的变化还是比较简便和实用的。

作者简介 夏泰淳(1947-)男,上海市人 副教授,从事流体力学的研究。

2 阻力的分析与计算

网箱的阻力主要来自于直杆、、圆环和网衣等,以下分别对这三种部件进行计算。

2.1 直杆阻力的计算

直杆水流中的阻力 R,可表示成函数式 : $R = f(V_0, d, \rho, \nu, H)^{3}$

其中V₀ ——水流速度(m/s);₀ ——流体密度(kg/m³);海水一般取 1025kg/m³;

v ——流体运动粘性系数(m^2/s),海水一般取 $1.31 \times 10^{-6} m/s$ (水温 10 °C 时);

d ──直杆的直径(m);H ──直杆的总高度(m),

根据量纲分析法,可以证明:阻力系数 $C_d = \frac{2R}{\rho V_0^2 A} = f(\text{Re})^{4}$

其中 $A = H \cdot d$,即直杆与来流相垂直方向的投影面积 ;Re = $\frac{V_0 \cdot d}{v}$,直杆的雷诺数。 其中阻力系数 C_d 与雷诺数 Re 函数关系式 $C_d = f(Re)$ 经过数学拟合为:

$$C_d = \frac{1.1}{1+1.336 \times 10^{-3} e^{1.644 \times 10^{-5} \text{Re}}}$$

拟合后的数据与原始数据见表 1 结果看来是令人满意的。

表1 处理后的数据与原始数据的比较

Tab.1 The contrast betwwn the calculated data and the original data

Re($\times 10^{-4}$)	9.6	11.58	13.51	14.48	15.44	17.37	19.30	20.27	23.17
C_d	1.1	1.092	1.08	1.078	1.073	1.063	1.053	1.049	1.034
\widehat{C}_d	1.092	1.089	1.084	1.082	1.078	1.070	1.058	1.050	1.020
$C_d - \widehat{C}_d$	0.008	0.003	0.004	0.004	0.005	0.007	0.005	0.001	0.014
$Re(\times 10^{-4})$	24.13	27.03	28.96	30.89	33.78	34.75	38.61	40.54	46.33
C_d	1.029	1.015	1.005	0.938	0.735	0.668	0.454	0.382	0.215
\widehat{C}_d	1.006	0.953	0.904	0.843	0.730	0.687	0.503	0.413	0.196
$C_d - \widehat{C}_d$	0.023	0.062	0.101	0.095	0.005	0.019	0.049	0.031	0.019

在实用计算中,要计算直杆在水流中的阻力 R₁,其公式是:

$$R_{1} = C_{d} \times \frac{1}{2} \rho V_{0}^{2} A = \frac{1.1}{1 + 1.336 \times 10^{-3} e^{1.644 \times 10^{-5} \text{Re}}} \times \frac{1}{2} \rho V_{0}^{2} A$$

2.2 圆环阻力的计算:

圆环在水流中的阻力 *R*,可表示成函数式 :*R* = $f(V_0, d, \rho, \nu, D)^{31}$,其中 d ——圆环杆的直径 *m*); *D* ——圆环的直径 *m*)根据量纲分析法,可以证明:

$$C_d = \frac{2R}{\rho V_0^2 A} = f(\text{Re})^{42}$$

其中 $A = d \cdot D$,即圆环在与来流相垂直方向的投影面积 ;Re = $\frac{V_0 \cdot d}{v}$,圆环的雷诺数 ,圆环的阻力计算如 图 2 所示。

在圆环上取一微元 dl,来流 V_0 在其径向的分速度 $V_r = V_0 \cos\theta$;来流在其切向的分速度 $V_\tau = V_0 \sin\theta$; 那么 在 dl 长度的圆环上,

水流的径向阻力为 : $dR_r = C_{dr} \frac{\rho_0^2 \cos^2 \theta}{2} \cdot d \cdot \frac{D}{2} d\theta$

水流的切向阻力为 : $dR_r = C_{dr} \frac{\rho_0^2 \sin^2 \theta}{2} \cdot d \cdot \frac{D}{2} \cdot d\theta$ 该微元受到水流在来流方向的阻力 dR 为 : $dR = dR_r \cos\theta + dR_r \sin\theta = \frac{\rho V_0^2}{2} \cdot \frac{D}{2} \cdot d \cdot [C_{dr} \cos^3\theta + C_{dr} \sin^3\theta] d\theta ;$ 对于四分这一的圆环,其来流方向的阻力为 : $R_{0.25} = \frac{\rho V_0^2}{2} \cdot \frac{D}{2} \cdot d \cdot [C_{dr} \int_0^{\frac{\pi}{2}} \cos^3\theta d\theta + C_{dr} \int_0^{\frac{\pi}{2}} \sin^3\theta d\theta];$ 所以 $R = \frac{4}{3} C_d \times \rho V_0^2 \cdot D \cdot d$,其中 $C_d = C_{dr} + C_{dr} ;$ $\Leftrightarrow f(\text{Re}) = \frac{4}{3} C_d = \lambda$,则上式 $R = \lambda \times \frac{1}{2} \rho V_0^2 D \cdot d$

根据计算,可以得到对于不同的雷诺数 Re,阻 力系数 C_d 和 λ 的函数关系,通过拟合,得 $\lambda = f(Re)$ 的函数关系式为

$$\lambda = \frac{1.7683}{1 + 8.03 \times 10^{-4} e^{1.928 \times 10^{-5} \text{Re}}}$$

拟合后的数据与原始数据如表 2,结果看来是令人 满意的。

Fig.2 The sketch map the calculation method of the resistance of round rim

	表 2	处埋后的]数据与原始3	数据的比 望	较	
Tab.2	The contrast	between	the calculated	data and	the original	data

Re($\times 10^{-4}$)	5.79	7.72	8.69	9.65	11.58	14.48	15.44
$\lambda = \frac{4}{3} C_d$	1.76	1.76	1.76	1.76	1.747	1.725	1.717
λ	1.764	1.762	1.760	1.759	1.755	1.764	1.741
$ \lambda - \hat{\lambda} $	0.004	0.002	0.000	0.001	0.008	0.021	0.024
Re($\times 10 - 4$)	17.37	19.30	23.17	24.13	28.96	34.75	
$\lambda = \frac{4}{3} C_d$	1.701	1.685	1.655	1.647	1.565	1.069	
λ	1.729	1.711	1.652	1.631	1.457	1.070	
$ \lambda - \hat{\lambda} $	0.028	0.026	0.003	0.016	0.108	0.001	

在实用上,要计算圆环在水流中的阻力

$$R_{\rm II} = \lambda \cdot \frac{1}{2} \rho V_0^2 \cdot A$$
$$= \frac{1.7683}{1 + 8.03 \times 10^{-4} e^{1.829 \times 10^{-5} \text{Re}}} \times \frac{1}{2} \rho V_0^2 \cdot A$$

2.3 网衣阻力的计算

假设网片处于较位理想状态:

(1)网片编结采用无结工艺,锥形网片近似看成 圆锥形,且网片充分张开;

(2) 网片不因水流而变形, 网片始终保持着圆锥型, 即网片微元与水流的夹角呈理想状态;

(3)圆锥型网片上下部的缩结系数一致为一常数。取上半部网衣,如图3所示:

图 3 网衣阻力计算示意图

Fig.3 The calculation method of the resistance of net enclosure $% \left[{{{\rm{Fig.3}}} \right] = {{\rm{Fig.3}}} \right]$

将来流 V_0 分解成网片微元的径向速度来流 V_0 在其径向的分速度 V_r ;来流在其切向的分速度 V_τ , 如图 4 所示 图 5 为网片微元轴对称平面示意图。

图 4 水平面内来流与网片的俯视示意图 Fig.4 The overlook of the net enclosure and velocity distributions in the horizontal

显然, $V_r = V_0 \cos\theta$, $V_{\tau} = V_0 \sin\theta$, V_r 与网片的夹角为 $\alpha = \arctan \frac{H}{D}$, V_{τ} 与网片的夹角为 0, 微元的虚构 面积 $ds = \frac{1}{2} \times \frac{D}{4} \sqrt{D^2 + H^2} d\theta$,实际线面积为:

 $ds = \frac{d}{a} \frac{1}{E_t E_n} \times \frac{1}{2} \times \frac{D}{4} \sqrt{D^2 + H^2} d\theta$

其中 , $d \longrightarrow$ 网线的直径 ; $a \longrightarrow$ 网目的目脚长度 ; $E_t \longrightarrow$ 网片的横向缩结系数 ; $E_n \longrightarrow$ 网片的纵 向缩结系数 ; $D \longrightarrow$ 网箱圆环直径 ; $H \longrightarrow$ 网箱直杆高度 现令 $\frac{d}{a} \frac{1}{EE_a} = \lambda$,则

 $ds '=\frac{1}{2} \times \lambda \times \frac{D}{4} \sqrt{D^2 + H^2} d\theta ,$ 网片微元所受的径向、切向水阻力分别为: $dR_r = C_a \times \frac{1}{2} \rho V_r^2 ds '= \frac{1}{4} C_a (\zeta V_0 \cos\theta)^2 \lambda \frac{D}{4} \sqrt{D^2 + H^2} d\theta$

$$dR_{t} = C_{a} \times \frac{1}{2} \rho V_{\tau}^{2} ds = \frac{1}{4} C_{a} (\zeta V_{0} \sin \theta)^{2} \lambda \frac{D}{4} \sqrt{D^{2} + H^{2}} d\theta$$

阻力系数根据田内的网片阻力系数公式:

 $C_a = (C_{D90} - C_{D0}) \sin^2 \alpha + C_{D0}$, $C_r = C_{D0}$,其中 C_{D90} – 网片与来流垂直时的阻力系数,取 1.1; C_{D0} – 网 衣与来流平行时的阻力系数 取 0.27^[5]。 则微元网片所受的 *x* 方向的阻力:

 $dR = dR_r \cos\theta + dR_r \sin\theta = \frac{1}{4} \rho V_0^2 \lambda \frac{D}{4} \sqrt{D^2 + H^2} (C_\alpha \cos^3\theta + C_r \sin^3\theta) d\theta$

对于整个网片(上部分)在 x 方向上的阻力:

$$R_{\rm III} = \frac{2}{3} \times \rho V_0^2 \lambda \frac{D}{4} \sqrt{D^2 + H^2} [(C_{\rm D90} - C_{D0}) \frac{H^2}{D^2 + H^2} + 2C_{\rm D0}]$$

2.4 计算实例

设网箱的主尺度为 :直杆高度 H = 14.62m。圆环曲半径 D = 25m ,来流的速度 V_0 在 $1.0 \sim 3.0$ 节变 化 ;直杆的直径 d 在 $0.25 \sim 0.4m$ 变化 ;圆环材料直径在 $0.15 \sim 0.3m$ 变化 ;为了方便计算 ,取网片的横 向缩结系数 $E_t = 0.5$ 则 $E_n = \sqrt{1 - 0.5^2} = 0.866$;网箱用网线种类很多 ,这里采用较为常用的 $23.3 dtex - 72^{61}$,其网线直径约为 1.4mm 左右 ,网目大小在 $25 \sim 50mm$,故网片的线面积系数 d/a 取 $0.04 \sim 0.11$;

分别求出直杆、圆环、网片的阻力如表 3、表 4 和表 5。

表 3 直杆在不同流速下的阻力(N)

	Tab.5 The resistances	of the buoyant spa	according to the u	interent incurum ver	ocity		
直径		流速 V(n mile)					
(m)	1.0	1.5	2.0	2.5	3.0		
0.25	543	1211	2114	3175	4203		
0.3	650	1440	2464	3503	4074		
0.35	755	1656	2725	3461	3155		
0.4	859	1848	2832	2944	1910		

ab.3 The resistances of the buoyant spar according to the different medium velocity

表4 圆环在不同流速下的阻力(N)

Tab.4 The resistances of teh round rim according to the different medium velocity

直径	流速 V(n mile)					
(m)	1.0	1.5	2.0	2.5	3.0	
0.15	889	2019	3578	5557	7920	
0.20	1197	2683	4728	7254	10053	
0.25	1494	3334	5803	8601	10936	
0.30	1789	3960	6713	9113	9342	

表5 网片在不同流速下的阻力(N)

Tab.5 The resistances of the net enclosure according to the different medium velocity

d / a	流速 V ₀ (n mile)						
	1.0	1.5	2.0	2.5	3.0		
0.04	2277	5124	9110	14234	30497		
0.06	3416	7686	13665	21351	30746		
0.08	4555	10249	18220	28468	40994		
0.09	5124	11530	20497	32027	46119		
0.11	6243	14092	25052	39144	56367		

那么 整个网箱的水阻力 $R = (R_1 + R_{\parallel} + 2R_{\parallel}) + R_{\text{M}+}$ 对于该尺寸的网箱在 2.5~3.0 n mile 的水 流中 其总阻力大致为 9500 kg 左右。

3 讨论

(1)前已所述,由于海流是相当复杂的,以上估算是建立在流体作定常运动,即对于水流在一段时间 内其流向和流速保持不变,并认为网箱内外的流速场差别很小;

(2) 在估算过程中,由于辐条直径远小于浮杆和圆环,只将网箱分为主要三部分,忽略了其余部分的 阻力,从最终的计算也可看出,网箱的主要阻力在于网片上,因此这种简化是可行的;

(3) 仅讨论估算方法的可行性,故采用理想化模型的方法,尽可能的简化了模型,不考虑网箱在复杂 环境中,例如网箱倾斜或动阻力等,所得结果同实际情况势必存在一定得差异,本文仅对网箱的水动力 学中相对重要的水阻力估算进行了探讨,希望能在此基础上,结合网箱模型实验或海上实测的结果,提 出行之有效的实用计算方法。

参考文献:

- [1] http://www.oceanspar.com/seastation.htm[Z].
- [2] 谌志新 ,王中新 ,外海抗风浪网箱系统 J].渔业现代化 ,2001(3):19-22.
- $\left[\ 3 \ \right]$ Becker H. A. , Dimensionless Parameters $\left[\ M \ \right]$, NY. Halstead .1976 .
- [4] 陈建宏(译).流体力学[M].北京 晓圆出版社.1992.
- [5] 周应祺,许柳雄,何其渝.渔具力学[M].北京:中国农业出版社.1999.
- [6] 杭州飞鹰船艇有限公司,浙江省海洋水产研究所.碟型升降式深水网箱[R]. 2001.