## 黄原胶高产菌株 HL-9901发酵培养基的优化

## 胡德亮 陈有容 李柏林 齐凤兰 李淑侠 张雪花

(上海水产大学食品学院,200090)

摘 要 采用黄单胞杆菌(Xanthomonas campestris)诱变株 HL-9901进行试验。采用正交设计与统计学分析,确定出最佳发酵培养基配方为:淀粉4%,葡萄糖2%,蛋白胨 0.1%, $NaNO_3$ 1%, $(NH_4)_2$ HPO $_4$ 0.3%, $K_2$ HPO $_4$ 0.3%, $MgSO_4$ 0.1%, $CaCO_3$ 0.09%。30h 时补加1.5%的葡萄糖。最终产率可达到4.063g/100mL,碳源转化率为54.17%,发酵时间可缩短至54h。并测定了最优化培养基播瓶发酵中相关控制参数的变化。

关键词 黄单胞杆菌,黄原胶,正交设计中图分类号 TS201.3

黄原胶是由野生黄单胞菌以碳水化合物为主要底物,经发酵产生的一种酸性胞外杂多糖 [赵大健和王锐 1986]。由于其具有诸多优良的性能[郑宝东等 1993],因此 近年来在食品、化工、陶瓷、石油等许多行业中得到了越来越广泛的应用[梁凤来 1990,何敬欣等 1990]。而且目前国内外许多厂家正在扩大生产。但相对来说,国内的产率多维持在3%~4%,周期多为72h~96h[王福源等 1998]。本文采用正交试验设计和数理统计的方法,进行了发酵培养基的优化,使黄原胶的产率达到了4.063g/100mL,发酵周期缩短至54h。

## 1 材料与方法

#### 1.1 试验菌种

HL-9901菌株。由本研究室自野油菜黄单胞杆菌诱变获得。

- 1.2 培养基
- 1.2.1 斜面菌种培养基(%,W/V)(pH=7.0)

蔗糖 2 蛋白胨 1 酵母膏 0.5 牛肉浸膏 0.1 琼脂 2

1.2.2 液体菌种培养基(%,W/V)(pH=7.0)

蔗糖 3 蛋白胨 1 NaNO<sub>3</sub> 1 酵母膏 1 MgSO<sub>4</sub> 0.05 菌种培养采用250mL 三角瓶,装液量50mL,八层纱布封口,121℃灭菌20min。

#### 1.2.3 摇瓶发酵培养基(pH=7.0)

碳 源:葡萄糖、可溶性淀粉

氮 源:蛋白胨、NaNO。

无机盐:(NH4)2HPO4、K2HPO4、MgSO4、CaCO3

有机酸:柠檬酸

分别以上述九种成分作为发酵培养基的九个因素,每个因素选取三个水平,用 L<sub>27</sub>(3<sup>13</sup>)正交表[韩於羹 1989]设计得到27种组合培养基。发酵培养基采用250mL 三角瓶,装液量50mL,八层纱布封口,121℃灭菌20min。

#### 1.3 试验条件

#### 1.3.1 斜面菌种

28~29 C,恒温培养箱培养72h。

#### 1.3.2 种子培养液

Φ1mm 的接种环取5环斜面菌种于液体培养基中,28~29℃,230rpm 摇床培养28h,镜检菌体形态正常且无杂菌后备用。

#### 1.3.3 摇瓶发酵

按正交设计的发酵液配方配制各组发酵液,然后按10%的接种量接种种子培养液,接着置于28~29℃,230rpm 摇床培养72h。培养结束后用醇法沉降,离心分离后将沉淀物在50℃烘至恒重,每个产胶率结果均为三个平行样品的平均值。

#### 1.3.4 O·D<sub>650</sub>值测定条件

发酵过程中,每隔4h 取一次样,直至40h 时止。以未接种的种子液作空白对照,采用721分光光度计,在波长650nm 处测定 O·D 值。

#### 1.3.5 其它参数的测定

pH 值的测定采用 YXQ·SG41·280型酸度计;粘度的测定采用 NDJ-1型旋转粘度计,4\*转子,6rpm;残糖的测定采用半定量尿糖试纸;氨基氮的测定采用甲醛滴定法[何照范和张迪清 1999]。

### 2 结果

#### 2.1 菌株 HL-9901生长曲线的绘制

从图1中可见,当培养时间达到28h 左右时,菌种生长基本处于对数期与稳定期的交界处。而在约12~28h 这段对数期内,菌体每分裂一次所需的代时(增代时间)最短,即菌体的数量达到了最多,代谢能力最为旺盛,酶系最为活跃,而此后则趋于平衡。考虑到实际生产的要求,应尽量缩短菌种培养时间,使单批发酵时间缩短。基于上述原则,将液体菌种培养时间确定为28h。

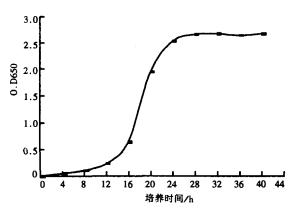



图1 HL-9901菌株生长曲线 Fig. 1 The growth curve of strain HL-9901

#### 2.2 最佳发酵培养基的确定

#### 2.2.1 正交试验表头设计

以可溶性淀粉、葡萄糖、蛋白胨、 $(NH_4)_2HPO_4$ 、 $K_2HPO_4$ 、 $MgSO_4$ 、 $CaCO_3$ 、柠檬酸作为发酵因素,每个因素各选取三个水平,并按  $L_{27}(3^{13})$ 正交表设计27组摇瓶发酵试验,每组做3个平行。以下为表头设计。

表1 正交试验表头设计 Tab. 1 Table head design of the orthogonal trial

| 表 | 头设计               | Α          | В |   | C | D | E                   | F | G | Н |    | I                    |    |    |
|---|-------------------|------------|---|---|---|---|---------------------|---|---|---|----|----------------------|----|----|
| 列 | 号                 | 1          | 2 | 3 | 4 | 5 | 6                   | 7 | 8 | 9 | 10 | 11                   | 12 | 13 |
| A | 可溶性淀粉             | $A_13$     |   |   |   |   | $A_24$              |   |   |   |    | $A_35$               |    |    |
| В | 葡萄糖               | $B_12$     |   |   |   |   | $B_21$              |   |   |   |    | $B_30$               |    |    |
| C | 蛋白胨               | $C_{1}0.3$ |   |   |   |   | $C_20.2$            |   |   |   |    | C <sub>3</sub> 0. 1  |    |    |
| D | NaNO <sub>3</sub> | $D_10.1$   |   |   |   |   | $D_20.2$            |   |   |   |    | $D_30.3$             |    |    |
| E | $(NH_4)_2HPO_4$   | $E_10.1$   |   |   |   |   | $E_20.3$            |   |   |   |    | $E_30.5$             |    |    |
| F | K₂HPO₄            | $F_10.2$   |   |   |   |   | $F_20.3$            |   |   |   |    | F <sub>3</sub> 0. 4  |    |    |
| G | MgSO <sub>4</sub> | $G_10.5$   |   |   |   |   | $G_20.3$            |   |   |   |    | $G_30.1$             |    |    |
| Н | CaCO <sub>3</sub> | $H_10.1$   |   |   |   |   | H <sub>2</sub> 0.09 |   |   |   |    | H <sub>3</sub> 0.069 | )  |    |
| I | 柠檬酸               | $I_1O$     |   |   |   |   | $I_20.1$            |   |   |   |    | $I_30.2$             |    |    |

注:30h 时补加浓度为1.5%的葡萄糖溶液。列号的"1"、"6"、"11"三栏中的数字均为"%"。

表2 正交表 L<sub>27</sub>(3<sup>13</sup>)

Tab. 2 Orthogonal table  $L_{27}(3^{13})$ 

| 试验序号           | 1                    | 2              | 3              | 4                | 5                         | 6              | 7                | 8                         | 9                | 10                        | 11             | 12                        | 13                        |
|----------------|----------------------|----------------|----------------|------------------|---------------------------|----------------|------------------|---------------------------|------------------|---------------------------|----------------|---------------------------|---------------------------|
| Α              | $\mathbf{A}_1$       | $A_1$          | Aı             | Aı               | $A_1$                     | $A_1$          | $A_1$            | A <sub>1</sub>            | $A_1$            | A <sub>2</sub>            | A <sub>2</sub> | A <sub>2</sub>            | A <sub>2</sub>            |
| В              | $B_1$                | $\mathbf{B}_1$ | $\mathbf{B}_1$ | $B_2$            | $B_2$                     | $B_2$          | $\mathbf{B}_3$   | $B_3$                     | $\mathbf{B}_{3}$ | $\mathbf{B}_1$            | $\mathbf{B_1}$ | $\mathbf{B_1}$            | $\mathbf{B_2}$            |
| C              | $C_1$                | $C_1$          | $C_1$          | $C_2$            | $C_2$                     | $C_2$          | $C_3$            | $C_3$                     | $C_3$            | $C_3$                     | C <sub>3</sub> | $C_3$                     | $C_1$                     |
| D              | $D_1$                | $D_2$          | $D_3$          | $\mathbf{D}_1$   | $\mathbf{D_2}$            | $D_3$          | $\mathbf{D_1}$   | $D_2$                     | $D_3$            | $D_1$                     | $\mathbf{D_2}$ | $\mathbf{D_3}$            | $D_1$                     |
| E              | $\mathbf{E_1}$       | $E_2$          | $\mathbf{E}_3$ | $\mathbf{E}_{1}$ | $\mathbf{E_2}$            | $\mathbf{E_3}$ | $\mathbf{E}_{1}$ | $\mathbf{E}_{\mathbf{z}}$ | $\mathbf{E_3}$   | $\mathbf{E}_{\mathbf{z}}$ | $\mathbf{E_3}$ | $\mathbf{E}_1$            | $\mathbf{E}_{2}$          |
| F              | $\mathbf{F}_1$       | $\mathbf{F_2}$ | $F_3$          | $\mathbf{F}_1$   | $F_2$                     | $\mathbf{F}_3$ | $\mathbf{F}_1$   | $\mathbf{F}_{2}$          | $\mathbf{F_3}$   | $\mathbf{F_3}$            | $\mathbf{F_1}$ | $\mathbf{F}_{\mathbf{z}}$ | $\mathbf{F}_3$            |
| G              | $G_1$                | $G_2$          | $G_3$          | $G_2$            | $G_3$                     | $G_1$          | $G_3$            | $G_1$                     | $G_2$            | $G_1$                     | $G_2$          | $G_3$                     | $G_2$                     |
| H              | $\mathbf{H}_1$       | $H_2$          | $H_3$          | $H_2$            | $H_3$                     | $H_1$          | $H_3$            | $H_1$                     | $H_2$            | $H_2$                     | $H_3$          | $\mathbf{H_1}$            | $H_3$                     |
| I              | $\mathbf{I}_1$       | $I_2$          | $I_3$          | $I_3$            | $I_1$                     | $1_2$          | $I_2$            | $I_3$                     | $\mathbf{I}_1$   | $I_1$                     | I <sub>2</sub> | $I_3$                     | $I_3$                     |
|                |                      |                |                |                  |                           |                |                  |                           |                  |                           |                |                           |                           |
| 14             | 15                   | 16             | 17             | 18               | 19                        | 20             | 21               | 22                        | 23               | 24                        | 25             | 26                        | 27                        |
| A <sub>2</sub> | A <sub>2</sub>       | A <sub>2</sub> | $A_2$          | A <sub>2</sub>   | A <sub>3</sub>            | A <sub>3</sub> | A <sub>3</sub>   | A <sub>3</sub>            | A <sub>3</sub>   | A <sub>3</sub>            | A <sub>3</sub> | $A_3$                     | A <sub>3</sub>            |
| $B_2$          | $B_2$                | $\mathbf{B_3}$ | $\mathbf{B_3}$ | $B_3$            | $\mathbf{B_1}$            | $\mathbf{B_1}$ | $\mathbf{B_1}$   | $\mathbf{B_2}$            | $\mathbf{B_2}$   | $B_2$                     | $\mathbf{B_3}$ | $\mathbf{B_3}$            | $B_3$                     |
| C-             | $\dot{\mathbf{C}}_1$ | C <sub>2</sub> | $C_2$          | $C_2$            | $C_2$                     | $C_2$          | $C_2$            | $C_3$                     | $C_3$            | $C_3$                     | $C_1$          | $\mathbf{C}_1$            | $C_1$                     |
| $D_2$          | $D_3$                | $\mathbf{D}_1$ | $D_2$          | $D_3$            | $\mathbf{D}_1$            | $D_2$          | $D_3$            | $D_1$                     | $D_2$            | $D_3$                     | $\mathbf{D_1}$ | $D_2$                     | $D_3$                     |
| $\mathbf{E_3}$ | $\mathbf{E}_1$       | $\mathbf{E_2}$ | $\mathbf{E}_3$ | $\mathbf{E}_1$   | $E_3$                     | $\mathbf{E}_1$ | $\mathbf{E_2}$   | $E_3$                     | $\mathbf{E}_1$   | $E_2$                     | $\mathbf{E_3}$ | $\mathbf{E}_1$            | $\mathbf{E}_{\mathbf{z}}$ |
| F              | $\mathbf{F}_{2}$     | $\mathbf{F}_3$ | $\mathbf{F}_1$ | $\mathbf{F}_{2}$ | $\mathbf{F}_{\mathbf{z}}$ | $F_3$          | $\mathbf{F_1}$   | $\mathbf{F_2}$            | $\mathbf{F_3}$   | $\mathbf{F}_1$            | $F_2$          | $\mathbf{F_3}$            | $\mathbf{F}_1$            |
| $G_3$          | $G_1$                | $G_3$          | $G_1$          | $G_2$            | $G_1$                     | $G_2$          | $G_3$            | $G_2$                     | $G_3$            | $G_1$                     | $G_3$          | $G_1$                     | $G_2$                     |
| $H_1$          | $H_2$                | $H_1$          | $H_2$          | $H_3$            | $H_3$                     | $H_1$          | $H_2$            | $H_1$                     | $H_2$            | $H_3$                     | $H_2$          | $H_3$                     | $H_1$                     |
| $I_1$          | $I_2$                | I <sub>2</sub> | $I_3$          | $I_1$            | $\mathbf{I}_1$            | $I_2$          | $I_3$            | $I_3$                     | $I_1$            | $I_2$                     | $I_2$          | $I_3$                     | $\mathbf{I}_1$            |

由表3可以发现,该正交组合中的最大产胶率为3.996g/100mL,最小产胶率为1.700g/100mL。

|        | 衣3 合组括拟以短时厂以举                                           |   |
|--------|---------------------------------------------------------|---|
| Tab. 3 | Xanthan gum productivity of each group shake flask tria | i |

| 试验序号     | 1       | 2      | 3      | 4      | 5     | 6     | 7      | 8      | 9     |
|----------|---------|--------|--------|--------|-------|-------|--------|--------|-------|
| 产胶率      | 3. 391  | 3. 323 | 2. 215 | 2.301  | 3.179 | 2.616 | 1. 700 | 2. 334 | 3.526 |
| 试验序号     | 10      | 11     | 12     | 13     | 14    | 15    | 16     | 17     | 18    |
| 产胶率      | 3.912   | 3.371  | 3.600  | 3. 475 | 3.396 | 3.301 | 3.845  | 2.832  | 2.947 |
| 试验序号     | 19      | 20     | 21     | 22     | 23    | 24    | 25     | 26     | 27    |
| 产胶率      | 3.996   | 2.794  | 3. 785 | 3.114  | 3.412 | 3 374 | 3.711  | 2.035  | 3.000 |
| T        | 84.485  |        |        |        |       |       |        |        |       |
| $T^2/27$ | 264.360 |        |        |        |       |       |        |        |       |

#### 2.2.2 试验结果分析

各组摇瓶试验的平均产胶率结果见表3。各组产胶率结果分析见表4。试验结果方差分析见表5。根据表4的统计分析,黄原胶发酵培养基的最佳配方应为:A<sub>2</sub>B<sub>1</sub>C<sub>3</sub>D<sub>1</sub>E<sub>2</sub>F<sub>2</sub>G<sub>3</sub>H<sub>2</sub>I<sub>1</sub>。但该组合在表1的正交表中并未出现。所以,上述的培养基组合是否为该正交试验中的最优化培养基,需要在试验中加以验证。

由表5可知。因子 A 高度显著,因子 E 和 I 显著,其余因子不显著。该结果虽然说明碳源在黄原胶的合成中起关键作用,但并非碳源含量越高对黄原胶的合成越有利。因为任何生物的生长都有一个最适环境,而某种成分的改变,必然会影响这种最适条件。碳源的含量过高,同样会对菌体产生底物抑制,不利于胶体的合成。在多次摇瓶试验中发现,如果继续提高总碳源含量,发酵至终点时,试验组的残糖含量大于2%。而通过发酵罐试验发现当所加总碳源量为7.5%

表4 产胶率结果统计分析表 Tab. 4 Statistic analysis table of Xanthan Gum productivity

|                                      | Α       | В       |          | С       | D       | E       |
|--------------------------------------|---------|---------|----------|---------|---------|---------|
| I j                                  | 24. 585 | 30. 387 | 28. 483  | 27.847  | 29.445  | 25. 481 |
| I,                                   | 30.679  | 28.168  | 27.725   | 28, 295 | 26. 676 | 30. 227 |
| H ;                                  | 29. 221 | 25.930  | 28.307   | 28.343  | 28. 364 | 28.777  |
| I j <sup>2</sup>                     | 604.422 | 923.370 | 811.281  | 775.455 | 867.008 | 649.281 |
| $\mathbf{I}_{\mathbf{J}^2}$          | 941.201 | 793.436 | 768.676  | 800.607 | 711.609 | 913.672 |
| <b>∏</b> j²                          | 853.867 | 672.365 | 801. 286 | 803.326 | 804.516 | 828.116 |
| $(I_j^2 + I_j^2 + I_j^2)/9$          | 266.610 | 265.463 | 264.583  | 264.376 | 264.793 | 265.674 |
| $(I_j^2 + I_j^2 + I_j^2)/9 - T^2/27$ | 2.250   | 1. 103  | 0.223    | 0.016   | 0.433   | 1.314   |

|   | F        | G        | Н       |         | 1       |         |          |
|---|----------|----------|---------|---------|---------|---------|----------|
|   | 27. 150  | 27. 791  | 28. 090 | 29. 042 | 30.759  | 29. 882 | 29.547   |
|   | 29.505   | 27. 851  | 30.103  | 29.396  | 28.035  | 26.828  | 27.954   |
|   | 27.830   | 28.843   | 26.292  | 26.047  | 25.691  | 27.775  | 26.984   |
|   | 737. 123 | 772.340  | 789.048 | 843.438 | 946.116 | 892.934 | 873.025  |
|   | 870.545  | 775.678  | 906.191 | 864.125 | 785.961 | 719.742 | 781. 426 |
|   | 774.509  | 831.919  | 691.269 | 678.446 | 660.027 | 771.451 | 728. 136 |
|   | 264.686  | 264. 437 | 265.168 | 265.112 | 265.789 | 264.903 | 264.732  |
| _ | 0.326    | 0.007    | 0.808   | 0.752   | 1.429   | 0.543   | 0.372    |

## 表5 试验结果方差分析表

| Tab. 5 Matrix analysis table of the test result | Tab. 5 | Matrix | anal vsis | table of | the | test result |
|-------------------------------------------------|--------|--------|-----------|----------|-----|-------------|
|-------------------------------------------------|--------|--------|-----------|----------|-----|-------------|

| 方差来源            | 偏差平方和                                             | 自由度. | 平均偏差平方和 | F      | 显著性 |
|-----------------|---------------------------------------------------|------|---------|--------|-----|
| Α               | $S_A = S_1 = 2.250$                               | 2    | 1. 125  | 6.818  | * 1 |
| В               | $S_B = S_2 = 1.103$                               | 2    | 0.552   | 3.345  |     |
| С               | $S_C = S_4 = 0.016$                               | 2    | 0.008   |        |     |
| D               | $S_D = S_5 = 0.433$                               | 2    | 0.217   | 1.315  |     |
| E               | $S_E = S_6 = 1.314$                               | 2    | 0.657   | 3. 982 | * 2 |
| ${ m k}_{ m V}$ | $S_F = S_7 = 0.326$                               | 2    | 0.163   |        |     |
| $G_{\nabla}$    | $S_G = S_8 = 0.077$                               | 2    | 0.039   |        |     |
| Н               | $S_H = S_9 = 0.808$                               | 2    | 0.404   | 2.448  |     |
| I               | $S_1 = S_{11} = 1.429$                            | 2    | 0.715   | 4.333  | * 2 |
| 误差              | $S_{ik} = S_3 + S_{10} + S_{12} + S_{13} = 1.890$ | 8    | 0. 236  |        |     |
| 误差△             | $S_{ijk} = S_{ijk} + S_4 + S_7 + S_8 = 2.309$     | 14   | 0.165   |        |     |

注:(1)F<sub>0.05</sub>(2,14)=3.74, F<sub>0.01</sub>(2,14)=6.51。(2)\*<sub>1</sub>表示该因素极显著;\*<sub>2</sub>表示该因素显著。

时,保持充足的通气量和适当的搅拌转速,最后的残糖含量可维持在0.5%左右。说明搅拌不仅使培养基成分均匀分布,而更主要的是增大了溶氧量。因此可以说通气量在黄原胶的生物合成中起着关键性作用。这一点与 Flores 等[1994]和 Herbst 等[1992]的试验结果相符合。

#### 2.3 最佳发酵培养基的确定及其相关参数的测定

将由表4筛选出的最佳发酵培养基配方  $A_2B_1C_3D_1E_2F_2G_3H_2I_1$ 按正交筛选试验中的条件进行摇瓶发酵试验。同时,在发酵过程中,每隔6h 取一次样品,测定其 pH 值、粘度(4"转子,6rpm)、残糖、氨态氮含量,并测定发酵结束后的产胶率。

#### 2.3.1 发酵过程中的粘度变化情况

从图2可见,在18h~48h 之间,黄原胶发酵液的粘度呈上升趋势,从48h 后基本趋于平稳。因为黄原胶是一种典型的假塑性流体,其溶液粘度随剪切速率的增加会明显降低,而黄单胞杆菌是一种需氧菌,所以当发酵进行至18h 后. 報報 可适当增加搅拌转速,以增加剪切速率,降低粘度,从而有利于通入的空气与发酵液充分接触,增大溶氧量,以利于菌体合成黄原胶。

#### 2.3.2 发酵过程中氨基氮的变化趋势

图3的变化曲线显示,开始的6h 内,菌体的生长和底物中氮源的消耗呈现此消彼长的变化关系,但以菌体生长占优势。6h~30h 内,氨基氮变化基本趋于平稳,即底物中蛋白质的消耗、

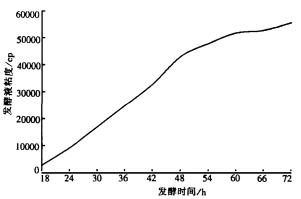



图2 发酵液粘度与发酵时间关系
Fig. 2 Relationship between the viscosity of
broth and the fermentation time

菌体的生长和酶类的产生基本保持平衡。从30h~48h,氨基氮则呈现下降趋势,结合图2中发酵液粘度的变化情况以及图1的菌体生长曲线,说明此段时期以消耗酶类合成黄原胶为主,同时菌体也在逐渐死亡。而从48h至发酵结束,氨基氮含量的变化较小。

#### 2.3.3 摇瓶发酵过程中残糖随时间的变化曲线

由图4可见,从54h 左右开始至发酵结束,发酵液中的残糖含量变化较小。

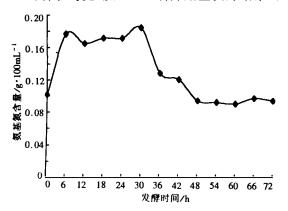



图3 发酵过程中氨基氮的变化

Fig. 3 Variation of amino acid nitrogen during fermentation

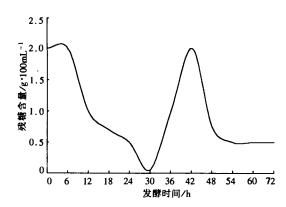



图4 残糖含量与发酵时间的关系

Fig. 4 Relationship between remnant sugar and fermentation time

#### 2.3.4 发酵过程中产胶率的变化曲线

从图5中可以看出,发酵过程中的产胶率逐渐增大,直至54h起,产胶率才开始基本保持稳定。同时分别根据图2、图3和图4的发酵液粘度、氨基氮含量变化和残糖变化曲线,对比54h与72h的产胶率差异以及这段时间所需要的能源,最终将 HL-9901菌株的发酵时间确定为54h。

#### 2.3.5 优化培养基的产胶率

由表4筛选出的最佳发酵培养基配方A<sub>2</sub>B<sub>1</sub>C<sub>3</sub>D<sub>1</sub>E<sub>2</sub>F<sub>2</sub>G<sub>3</sub>H<sub>2</sub>I<sub>1</sub>的产胶率在单独的验证试验中可以达到4.063g/100mL,且基本保持稳定,碳源转化率为54.173%,高于正交表2中所列的各组试验中的最高产胶率3.996g/100n.i.。由于正交试验法安排的试验方案具有一定的代

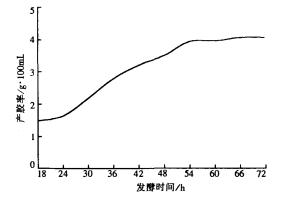



图5 产胶率与发酵时间的关系 Fig. 5 Relationship between productitvity and fermentaion time

表性,能够比较全面地反应各因子各水平对最终指标影响的大致情况,并且可以大大减少试验的次数,而且能够推断出在可供选择的因子水平范围内的最佳工艺条件,因此在培养基的优化中广为应用。

此外在实验中发现,继续提高总碳源的比例,产胶率的提高幅度较小,而发酵液中残糖剩余量大于2%,从节约的原则出发,不适于继续增大碳源的比例,而以7.5%较为合适。

## 3 结论

通过上述试验,确定出黄原胶高产菌株 HL-9901的最优化培养基为:淀粉4%,葡萄糖

2%,蛋白胨 0. 1%, Na NO<sub>3</sub> 1%, (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> 0. 3%, K<sub>2</sub>HPO<sub>4</sub> 0. 3%, MgSO<sub>4</sub> 0. 1%, CaCO<sub>3</sub> 0. 09%。30h 时补加浓度为1. 5%的葡萄糖溶液。

由于本试验所采用的数据主要来自摇瓶试验,而发酵罐生产和摇瓶发酵会有一定的差距。 所以,后续的试验仍然有以下几个问题需要解决:①发酵罐生产中的最佳转速和最适通气量以 及溶氧量;②发酵过程中的胞内和胞外酶种类的变化趋势;③摇瓶发酵试验中的残糖变化曲线 及产胶率的变化曲线显示,在54h左右至72h之间,一些表观参数基本保持恒定,但胶体性能 是否还会发生较大变化。

#### 参考文献

王福源,陈振风,王锦华, 1998. 现代食品发酵技术. 北京:中国轻工业出版社,618~627

何敬欣,郭金岭,姚保知. 1990. 食品添加剂一汉生胶的特征和应用,安徽化工,3:53~55

何照范,张迪清. 1999. 保健食品化学及其检测技术. 北京:中国轻工业出版社. 140~141

郑宝东,陆则桥,陈丽娇, 1993. 黄原胶流变特性的应用, 福建农学院学报, 22(4), 494~497

赵大健,王 锐. 1986. 黄原胶及其在食品工业上的应用. 食品与发酵工业,69(3):48~54

梁凤来. 1990. 黄原胶的性能及其在食品中的应用. 食品科学,9:34~39

韩於羹. 1989. 应用数理统计. 北京:北京航空航天大学出版社, 237~273,412~424

Flores F, Torres L G, Galindo E. 1994. Effect of the dissolved oxygen tension during cultivation of X. campestris on the production and quality of xanthan gum. J Biotechnol, 34(2):165~173

Herbst Holger, Schumpe Adrian, Deckwer Wolf Dieter. 1992. Xanthan production in stirred-tank fermentors: oxygen transfer and scale-up. Chem Eng Technol, 156(6):425~434

# OPTIMIZATION OF FERMENTATIO CULTURE MEDIUM FOR HIGH YIELD STRAIN HL-9901 OF XANTHAN GUM

HU De-Liang, CHEN You-Rong, LI Bai-Lin, QI Feng-Lan, LI Shu-Xia, ZHANG Xue-Hua (College of Food Science, SFU, 200090)

ABSTRACT The strain of HL-9901 induced from Xanthomonas campestris was used in the experiment. with orthogonal design and statistical analysis, the optimal prescription for fermentation was composed of 4% starch, 2% glucose, 0.1% peptone, 0.1% NaNO<sub>3</sub>, 0.3% (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>, 0.3% K<sub>2</sub>HPO<sub>4</sub>, 0.1% MgSO<sub>4</sub>, and 0.09% CaCO<sub>3</sub>, and 1.5% glucose was supplemented after 30 hours fermentation. The final productivity of xanthan gum was 4.063 g/100mL, the transformation of carbon source was 54.17% and the time of fermentation could be shortened to 54 hours. Meantime, some relevant parameters were measured in the course of fermentation with the optimized culture.

**KEYWORDS** Xanthomonas campestris, Xanthan gum, orthogonal design