摘要
通过同源重组技术,构建了hemoD基因缺失的副溶血弧菌敲除菌株ΔhemoD,对ΔhemoD菌株的毒力和感染四膜虫及凡纳滨对虾(Penaeus vannamei)的能力进行了评估。相比野生型菌株,ΔhemoD菌株溶血活性下降了45.7%,生物膜形成能力下降了36.2%,生长无明显变化。相比野生型菌株,ΔhemoD菌株对四膜虫的毒力降低,四膜虫对ΔhemoD菌株具有更强的摄食能力,增殖能力也更强。针对凡纳滨对虾的攻毒实验,发现ΔhemoD菌株半数致死量为1.3×1
副溶血弧菌(Vibrio parahaemolyticus)一种革兰氏阴性杆状细菌,具有鞭毛,广泛分布于河口与海洋中,是水产养殖主要病原菌之
目前对虾急性肝胰腺坏死还没有很好的应对措施,开发针对副溶血弧菌的疫苗是一个重要的方
副溶血弧菌野生菌株具氨苄青霉素抗性;大肠杆菌cc118感受态细胞含接合辅助质粒的大肠杆菌pHelper,具有氯霉素抗性;自杀质粒pSR47s具有卡那霉素抗性基因及sacB蔗糖敏感基因。嗜热四膜虫(Tetrahymena thermophila)来自中国海洋大学高珊教授实验室馈赠,凡纳滨对虾来自江苏南通如福水产苗业养殖公司。
以副溶血弧菌基因组DNA为模板,利用
引物名称 Primer | 引物序列(5'-3') Sequence(5´-3´) | 退火温度Tm/℃ | 产物大小Fragment/bp | 酶切位点 Enzyme cutting site |
---|---|---|---|---|
hemoD-P1 | CGAGCTCCGTTAAATACGTCTGGCTGG | 55 | 602 | SacⅠ |
hemoD-P2 | CAGTCTGAGAGCGGTATGAGGATTGAAGGTGTAGAAGTCG | 56 | ||
hemoD-P3 | CGACTTCTACACCTTCAATCCTCATACCGCTCTCAGACTG | 56 | 985 | |
hemoD-P4 hemoD-T1 hemoD-T2 hemoD-HB-F hemoD-HB-R |
CGGGATCCCATACAGGTGTCCGTAATCG CCCATCGGTAGATTCACTCT CAAGTATGGCACCTTGGTG CGAGCTCCAACTCTCGCAAGTGCTAT CGGGATCCCGATTACGGACACCTGTATG |
55 55 56 55 56 |
BamHⅠ
SacⅠ BamHⅠ | |
pSR47s-M13 | CAGGAAACAGCTATGAC | 54 | 353 | |
pSR47s-VECR | GATTTGCAGACTACGGGCCTA | 54 | ||
16S-F | AGAGTTTGATCCTGGCTCAG | 54 | 1442 | |
16S-R | GGTTACCTTGTTACGACTT | 54 |
注: 下划线表示酶切位点。
Notes: Enzyme cutting site underline.
挑取副溶血弧菌野生菌株和敲除菌株ΔhemoD平板上的单菌落,接种于1 mL LB液体培养基的无菌离心管中,置入30 ℃摇床中培养,将各菌液OD600均调整至0.5后,取100 μL菌液接种于含100 mL LB液体培养基的锥形瓶中,放入30 ℃摇床,150 r/min振荡培养,对锥形瓶中的菌液进行间隔取样,每隔1 h取上述各锥形瓶中的菌液测定其在600 nm下的OD值并记录。以培养时间为横坐标,各菌液OD600为纵坐标绘制生长曲线。
挑取平板上的单菌落于LB液体培养基中吹打混匀,放入摇床中培养至菌液浑浊。取浑浊的菌液10 μL接种于10 mL的LB液体培养基中,放入摇床中30 ℃培养1 d,取培养浑浊的菌液测定其OD600并将各菌液OD值均调整为0.5。取调整后菌液5 μL,垂直悬空缓慢滴加在我妻氏血琼脂平板上,各组设置3个平行,待菌液渗入固体培养基后,移至30 ℃培养箱,正置培养,定时观察各菌落溶血圈的变化,并拍照记录,利用Image J软件测定溶血圈面积与菌落面
活化后的菌液以千分之一的比例接种于LB液体培养基,30 ℃过夜培养,在96孔培养板中每孔加入100 μL LB液体培养基,再取上述过夜培养的菌液10 μL接种于96孔培养板各组对应孔中,每组设置3个平行,30 ℃静止培养36 h。用无菌PBS溶液冲洗3次,每孔加入100 μL甲醇固定15 min,风干后加入100 μL 1%结晶紫溶液染色5 min,自来水冲洗干净晾干,加入100 μL 33%的冰乙酸,37 ℃溶解30 min,最后用酶标仪测定其OD590
取保存于-80 ℃冰箱的四膜虫接种于灭菌的SPP培养基中,室温静置培养36 h,取两管50 mL虫液在4 ℃下3 000 r/min离心10 min,弃上清,加入无抗生素的SPP培养基10 mL重悬虫液,用细胞计数板在显微镜下对四膜虫进行计数,计算出浓缩虫液浓度,重复3次,取平均值,用SPP培养基将虫液浓度调整为2×1
选取虫液浓度为21
以体长2~4 cm的凡纳滨对虾作为实验动物测定各菌株对其的半数致死量。将副溶血弧菌ΔhemoD和WT菌株浓度分别稀释为1.0×1
取对照组、野生菌株感染组和敲除菌株ΔhemoD感染组24、48、72 h的凡纳滨对虾,解剖取肝胰腺组织,用4%PFA(多聚甲醛)固定,利用乙醇进行脱水,石蜡包埋切片,对组织进行H.E染色,中性树脂封片,光学显微镜观察拍照。
浸泡感染12、24、48、72、96 h时取样,每个时间点取样3 尾虾,解剖后取肠道组织,弃去粪便等,然后将肠道组织进行研磨,用无菌PBS清洗肠道,并进行适当倍数的稀释,然后将稀释好的肠道组织涂布于TCBS培养基上,第2天进行计数,记录野生菌和缺失菌株的数量,挑取菌株进行16S rDNA验证是否为副溶血弧菌。
重组质粒在副溶血弧菌内进行2次同源重组,融合片段通过同源重组替换细菌基因组上目的片段,从15%蔗糖培养基挑选敲除菌株,以野生菌株作为阴性对照进行PCR验证。如

图1 副溶血弧菌hemoD基因野生片段与敲除片段
Fig.1 Wild type and knockout fragments of Vibrio parahaemolyticus hemoD gene
M为2 000 marker;1.野生菌株以hemoD-T1- hemoD-T2引物PCR产物条带;2.ΔhemoD菌株以hemoD-T1- hemoD-T2引物PCR产物条带;3. Δhemo
M is 2 000 markers; 1. Wild type strain with hemoD-T1- hemoD-T2 primer PCR product strips; 2. ΔhemoD strain with hemoD-T1- hemoD-T2 primer PCR product strips;3.Δhemo
测定敲除菌株与野生菌株的生物学特征,发现hemoD缺失导致副溶血弧菌生物膜形成能力及溶血活性发生下降,生长能力无明显变化。ΔhemoD敲除菌株与野生菌株在我妻氏血平板上培养48 h,野生菌株溶血圈面积与菌株面积平均比值为3.24,ΔhemoD敲除菌株溶血圈面积与菌株面积平均比值为1.76。与野生菌株相比,hemoD敲除菌株溶血活性下降了45.7%。如

图2 副溶血弧菌ΔhemoD敲除菌株与野生菌株生物学特征对比
Fig.2 Biological characteristics of Vibrio parahaemolyticus hemoD knockout strain compared with wild type strain
(a)副溶血弧菌野生菌株、敲除菌株ΔhemoD和回补菌株hemo
(a) Haemolysis of Vibrio parahaemolyticus wild strain and knockout strain ΔhemoD on my wife's blood agar plates; (b) Statistical analysis of difference in haemolysis capacity of the two strains; (c) Growth curves of the two strains; (d) Statistical analysis of difference in biofilm formation capacity of the two strains.
如
hemoD基因敲除不影响副溶血弧菌的生长。如
利用四膜虫评估敲除菌株毒力。

图3 副溶血弧菌与四膜虫共培养情况
Fig.3 Co-culture of Vibrio parahaemolyticus with Tetrahymena thermophila
(a)四膜虫与菌株共培养6 h后固定拍照;(b)四膜虫对野生菌株与ΔhemoD菌株吞噬作用;(c)野生菌株与ΔhemoD菌株对四膜虫数量变化的影响。
(a) Photographs taken after fixation of Tetrahymena thermophila co-cultured with Vibrio parahaemolyticus for 6h; (b) Phagocytosis of T. thermophila on the wild strain and the ΔhemoD strain; (c) Effect of the wild strain and the ΔhemoD strain on the number of T. thermophila.
四膜虫对细菌具有吞噬作用,
副溶血弧菌感染凡纳滨对虾的半数致死量如
攻毒剂量 Dose of challenge /cfu | 死亡数量/总数 Number of death/Total | 死亡率 Mortality/% | ||||
---|---|---|---|---|---|---|
WT | ΔhemoD | WT | ΔhemoD | |||
4×1 | 33/50 | 22/50 | 66 | 44 | ||
4×1 | 29/50 | 20/50 | 58 | 40 | ||
4×1 | 23/50 | 19/50 | 46 | 38 | ||
4×1 | 19/50 | 12/50 | 38 | 24 | ||
LD50 |
2.57×1 |
1.30×1 | ||||
上升倍数 | 5.06 |

图4 WT和ΔhemoD感染凡纳滨对虾存活曲线和照片
Fig.4 Survival curves and photographs of WT and ΔhemoD-infected Penaeus vannamei
(a)凡纳滨对虾感染72 h时拍照记录;(b)凡纳滨对虾存活曲线。
(a)Vanabin shrimp photographic records at 72 h of infection; (b)Survival curves of Penaeus vannamei.
hemoD菌株在凡纳滨对虾肠道中的定殖能力弱于野生菌株。在取样的5个时间点中,野生菌株在凡纳滨对虾肠道中定殖的数量为升高后趋于稳定,hemoD菌株则是先升高再下降,且hemoD菌株感染组的对虾肠道定殖的数量均低于野生菌株感染组(

图5 WT和hemoD感染凡纳滨对虾肠道定殖能力差异
Fig.5 Intestinal colonisation of Vibrio parahaemolyticus infected Penaeus vannamei
凡纳滨对虾感染期间,分别在24、48和72 h对各组对虾肝胰腺进行解剖取样。如图版所示,对照组中肝胰腺细胞排列整齐,肝小管组织结构完整,呈星状结构,可以清晰观察到小管中的几种功能细胞(B细胞、R细胞和F细胞)。B细胞为泡状细胞,占据细胞大部分体积,主要功能是从肝胰腺小管的官腔中吸收营养物质;R细胞是吸收细胞,消化吸收营养物质并以脂滴的形式储存在细胞内;F细胞是纤维细胞,主要参与消化酶的合成及分泌过

凡纳滨对虾感染24(1,2,3)、48(4,5,6)、72(7,8,9) h时,肝胰腺组织病理切片,B为泡状细胞,R为吸收细胞,F为纤维细胞;1为轻微萎缩细胞,2为严重萎缩细胞,3为胞内物质溶解较严重细胞。
Histopathological sections of the hepatopancreas at 24(1,2,3), 48(4,5,6) and 72(7,8,9) h of infection in Penaeus vannamei, B is vesicular cells, R is resorptive cells and F is fibroblasts; 1 for slightly atrophied cells, 2 for severely atrophied cells, 3 for cells with more severe lysis of intracellular material.
图版 副溶血弧菌感染凡纳滨对虾肝胰腺组织
Plate Hepatopancreatic tissue of the Penaeus vannamei with the infection of Vibrio parahaemolyticus
本研究利用同源重组技术实现对hemoD基因的定向敲除,首次构建了副溶血弧菌敲除突变株ΔhemoD。ΔhemoD菌株在溶血能力、生物膜形成能力、致病力方面显著下降。hemoD基因在大肠杆菌分泌溶血素A的过程中起重要作用,属于膜转运蛋
四膜虫作为一种简单的模式生物,可对菌株毒力进行初步测
本文首次研究hemoD基因对副溶血弧菌感染凡纳滨对虾的影响,相较于野生菌株,ΔhemoD菌株对凡纳滨对虾的致死率有所下降,半数致死量提高了5 倍,说明hemoD基因敲除导致副溶血弧菌毒力明显减弱。副溶血弧菌是凡纳滨对虾养殖减产的主要原因之
总之,本研究构建了hemoD基因敲除的副溶血弧菌突变株ΔhemoD,分析其溶血、生物膜形成能力等方面与野生菌株的差异,并感染四膜虫和凡纳滨对虾,对其致病能力及毒性进行评估。ΔhemoD菌株对凡纳滨对虾的致病能力有所下降,后续在此菌株的基础上,利用基因工程技术敲除其他毒力因子,构建毒力更弱的菌株,为副溶血弧菌减毒活疫苗的制备奠定基础。
利益冲突
作者声明本文无利益冲突
参考文献
ECHAZARRETA M A, KLOSE K E. Vibrio flagellar synthesis[J]. Frontiers in Cellular and Infection Microbiology, 2019, 9: 131. [百度学术]
GUSTILATOV M, WIDANARNI, EKASARI J, et al. Protective effects of the biofloc system in Pacific white shrimp (Penaeus vannamei) culture against pathogenic Vibrio parahaemolyticus infection[J]. Fish & Shellfish Immunology, 2022, 124: 66-73. [百度学术]
龚斌, 潘育胜, 张艳秋, 等. 凡纳滨对虾细菌性病原的分离鉴定和耐药性研究[J]. 微生物学杂志, 2014, 34(5): 70-74. [百度学术]
GONG B, PAN Y S, ZHANG Y Q, et al. Isolation, identification and drug-sensitivity test of bacterial pathogen from Vanname Prawn (Litopenaeus vannamei)[J]. Journal of Microbiology, 2014, 34(5): 70-74. [百度学术]
赵永刚. 副溶血弧菌tdh, trh和tlh基因的克隆, 表达及基因敲除对其溶血活性的影响[D]. 青岛: 中国海洋大学, 2010. [百度学术]
ZHAO Y G. Cloning, expression of tdh, trh and tlh genes and analyzing of hemolysis of these gene deleted mutants of vibrio parahaemolyticus[D]. Qingdao: Ocean University of China, 2010. [百度学术]
于永翔, 王印庚, 蔡欣欣, 等. 环境、病原、免疫因子三要素与池塘养殖对虾AHPND发生的关联性[J]. 水生生物学报, 2023, 47(1): 1-10. [百度学术]
YU Y X, WANG Y G, CAI X X, et al. The occurrence of AHPND in pond cultured Litopenaeus vannamei and its influence on environment, pathogen and immune factors[J]. Acta Hydrobiologica Sinica, 2023, 47(1): 1-10. [百度学术]
HARPENI E, ISNANSETYO A, ISTIQOMAH I, et al. Bacterial biocontrol of vibriosis in shrimp: a review[J/OL]. Aquaculture International, 2024. [2024-04-20]. https://doi.org/10.1007/s10499-024-01445-z. [百度学术]
ARMITAGE S A O, PEUß R, KURTZ J. Dscam and pancrustacean immune memory - a review of the evidence[J]. Developmental & Comparative Immunology, 2015, 48(2): 315-323. [百度学术]
CHANG Y H, KUMAR R, NG T H, et al. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish[J]. Developmental & Comparative Immunology, 2018, 80: 53-66. [百度学术]
NG T H, KURTZ J. Dscam in immunity: a question of diversity in insects and crustaceans[J]. Developmental & Comparative Immunology, 2020, 105: 103539. [百度学术]
ITAMI T, TAKAHASHI Y, NAKAMURA Y. efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus[J]. Journal of Aquatic Animal Health, 1989, 1(3): 238-242. [百度学术]
POWELL A, POPE E C, EDDY F E, et al. Enhanced immune defences in Pacific white shrimp (Litopenaeus vannamei) post-exposure to a vibrio vaccine[J]. Journal of Invertebrate Pathology, 2011, 107(2): 95-99. [百度学术]
RAY A K, GOPAL C, SOLANKI H G, et al. Effect of orally administered vibrio bacterin on immunity, survival and growth in tiger shrimp (Penaeus monodon) grow-out culture ponds[J]. Letters in Applied Microbiology, 2017, 65(6): 475-481. [百度学术]
LIN Y C, CHEN J C, MORNI W Z W, et al. Vaccination enhances early immune responses in white shrimp Litopenaeus vannamei after secondary exposure to Vibrio alginolyticus[J]. PLoS One, 2013, 8(7): e69722. [百度学术]
AMATUL-SAMAHAH A, WAN OMAR W H H, MOHD IKHSAN N F, et al. Vaccination trials against vibriosis in shrimp: a review[J]. Aquaculture Reports, 2020, 18: 100471. [百度学术]
ZENG Q, SUN Y, LAI P, et al. Advancements in Vibrio vaccines for aquaculture[J]. Aquaculture International, 2024, 32(3): 3331-3356. [百度学术]
XIE H S, HUANG Y J, WANG S M, et al. Deletion of speA and aroC genes impacts the pathogenicity of Vibrio anguillarum in spotted sea bass[J]. Microbial Pathogenesis, 2024, 189: 106597. [百度学术]
ZHAO H T, LEE J, CHEN J. The hemolysin A secretion system is a multi-engine pump containing three ABC transporters[J]. Cell, 2022, 185(18): 3329-3340.e13. [百度学术]
李小艳, 李泽琦, 汪玉倩, 等. 嗜水气单胞菌acrA缺失菌株的构建及其生理功能的测定[J]. 生物技术通报, 2020, 36(11): 63-69. [百度学术]
LI X Y, LI Z Q, WANG Y Q, et al. Construction of Aeromonas hydrophila acrA deficient strain and determination of its physiological function[J]. Biotechnology Bulletin, 2020, 36(11): 63-69. [百度学术]
闫文慧, 李红斌, 王硕, 等. 临床分离金黄色葡萄球菌药物敏感性及其生物膜形成能力的研究[J]. 中国微生态学杂志, 2023, 35(7): 826-829. [百度学术]
YAN W H, LI H B, WANG S, et al. Drug sensitivity and biofilm forming ability of clinical isolated Staphylococcus aureus[J]. Chinese Journal of Microecology, 2023, 35(7): 826-829. [百度学术]
张晓露. 适于四膜虫的嗜水气单胞菌外膜蛋白表达载体的构建及虫菌共培养的体外试验[D]. 南京: 南京农业大学, 2009. [百度学术]
ZHANG X L. Construction of expressing vector with outer membrane protein from Aeromonas hydrophila suitable to Tetrahymena thermophila and in vitro co-culture of T. thermophila and A. hydrophila[D]. Nanjing: Nanjing Agricultural University, 2009. [百度学术]
阿拉帕特·阿布都古力, 李嘉琪, 谢惠芳. 亚砷酸钠对大鼠急性毒性作用和半数致死量的影响[J]. 职业与健康, 2022, 38(23): 3193-3196, 3201. [百度学术]
ALAPATE·ABUDOUGULI, LI J Q, XIE H F. Effects of acute toxicity and median lethal dose of sodium arsenite in rats[J]. Occupation and Health, 2022, 38(23): 3193-3196, 3201. [百度学术]
吴玉娇. 虾肝肠胞虫感染对虾肝胰腺的特征分析及对宿主脂肪酸代谢的影响[D]. 重庆: 西南大学, 2023. [百度学术]
WU Y J. Study on the Characteristics of Ecytonucleospora hepatopenaei infection in shrimp hepatopancreas and its effect on host fatty acids metabolism[D]. Chongqing: Southwest University, 2023. [百度学术]
KORONAKIS E, HUGHES C, MILISAV I, et al. Protein exporter function and in vitro ATPase activity are correlated in ABC‐domain mutants of HlyB[J]. Molecular Microbiology, 1995, 16(1): 87-96. [百度学术]
PIMENTA A L, RACHER K, JAMIESON L, et al. Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin[J]. Journal of Bacteriology, 2005, 187(21): 7471-7480. [百度学术]
RUEHLE M D, ORIAS E, PEARSON C G. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools[J]. Genetics, 2016, 203(2): 649-665. [百度学术]
潘厚军, 邓美玲, 古欣婷, 等. 双氢青蒿素对嗜热四膜虫的毒性效应[J]. 水生生物学报, 2022, 46(7): 1038-1044. [百度学术]
PAN H J, DANG M L, GU X T, et al. Toxic effects of dihydroartemisinin on Tetrahymena thermophila[J]. Acta Hydrobiologica Sinica, 2022, 46(7): 1038-1044. [百度学术]
CSABA G. The hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects[J]. Acta Microbiologica et Immunologica Hungarica, 2012, 59(2): 131-156. [百度学术]
PAULI W, JAX K, BERGER S. Protozoa in wastewater treatment: function and importance[M]//BEEK B. Biodegradation and Persistence. Berlin: Springer, 2005: 203-252. [百度学术]
PUSHKAREVA V I, PODLIPAEVA J I, GOODKOV A V, et al. Experimental Listeria–Tetrahymena–Amoeba food chain functioning depends on bacterial virulence traits[J]. BMC Ecology, 2019, 19(1): 47. [百度学术]
李诗怡, 杨靖亚, 马燕, 等. 副溶血弧菌耐热直接溶血毒素的急性毒性研究[J]. 安徽农业大学学报, 2020, 47(3): 386-390. [百度学术]
LI S Y, YANG J Y, MA Y, et al. Study on acute toxicity of Vibrio parahaemolyticus thermostable direct hemolysin[J]. Journal of Anhui Agricultural University, 2020, 47(3): 386-390. [百度学术]
HAN J E, TANG K F J, TRAN L H, et al. Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp[J]. Diseases of Aquatic Organisms, 2015, 113(1): 33-40. [百度学术]
KUMAR V, NGUYEN D V, BARUAH K, et al. Probing the mechanism of VPAHPND extracellular proteins toxicity purified from Vibrio parahaemolyticus AHPND strain in germ-free Artemia test system[J]. Aquaculture, 2019, 504: 414-419. [百度学术]
陈红菊, 张轩, 许高朋, 等. 副溶血弧菌高效消毒剂的筛选及PHMG防治对虾AHPNS的应用研究[J]. 水生生物学报, 2020, 44(2): 252-260. [百度学术]
CHEN H J, ZHANG X, XU G P, et al. Screen of disinfectant against Vibrio parahaemolyticus and the applicable evaluation of PHMG in preventing Litopenaeus vannamei AHPNS[J]. Acta Hydrobiologica Sinica, 2020, 44(2): 252-260. [百度学术]
杨惠婕, 张玉蕾, 刘碧洪, 等. 太平洋亚历山大藻对凡纳滨对虾的急性毒性效应[J]. 广东海洋大学学报, 2023, 43(3): 124-132. [百度学术]
YANG H J, ZHANG Y L, LIU B H, et al. Acute toxic effects of Alexandrium pacificum on Litopenaeus vannamei[J]. Journal of Guangdong Ocean University, 2023, 43(3): 124-132. [百度学术]