摘要
为比较湖面中华绒螯蟹(Eriocheir sinensis)养殖区与非养殖区水-气界面CO2通量之间的差异以及影响CO2通量的因素,选择于2023年8月4日至8月5日使用PS-9000便携式碳通量自动测量系统在骆马湖中华绒螯蟹养殖区与非养殖区水-气界面进行CO2通量测定,同时对气象因子及水质指标进行同步测定。结果显示,养殖区CO2通量平均值为0.012 μmol/(
大气中温室气体浓度的增加是全球气候变暖的主要原因之
骆马湖作为典型的过水性湖泊,总面积约375 k
本研究在对比骆马湖湖面中华绒螯蟹养殖区与非养殖区水-气界面CO2通量日变化特征的同时,测定相关气象因子和水质指标,使用多元逐步回归分析等方法探究两者的变化规律及影响因素。旨在为探究湖泊养殖中华绒螯蟹的CO2通量情况提供数据支持,为丰富关于湖泊排放和吸收CO2的研究提供理论参考。
本实验选择于2023年8月4日上午9时开始至次日上午9时结束,每隔4 h进行1次CO2通量的测定,同时进行相关气象因子和水质指标的测定以及水样的采集。采样日当天为晴天,气压值为999 hPa,白天的光照强度平均值为6.25×1

图1 骆马湖湖面采样点示意图
Fig.1 Schematic diagram of sampling points on the lake surface of Luoma Lake
S1为非养殖区采样点,S2为养殖区采样点。
S1 expresses sampling points in non-aquaculture area and S2 expresses sampling points in aquaculture area.
实验期间,使用便捷式碳通量自动测量系统(PS-9000&SC-12,北京理加联合科技有限公司)测定CO2通量,该仪器可以实时读取呼吸室内CO2的浓度变化,同时结合自身控制的空气温度、大气压等传感器的监测数据,通过计算得到CO2通量。每次采样前将水上浮体底座(内径32 cm、外径72 cm、高度20 cm)固定在采样点水体中,浮体没入水体深度为4 cm,以保证气室关闭时与外界无气体交换。测定时气室平衡时间设置为20 s,通量测量时间设置为100 s,气室排空时间设置为20 s,循环测量次数设置为5次,5次循环结束则完成1个采样点的测量。
与CO2通量测定同步,风速(WS)和气温(T)采用热敏式风速风量计测定(AR866A,希玛仪表);氧化还原电位(ORP)和pH采用便携式水质测试仪测定(PH200,哈维森环境科技有限公司);溶解氧(DO)和水温(WT)采用便携式电化学分析仪测定(HQ30d,哈希公司,美国)。
与CO2通量测定同步,在采样点采集两份10 cm深的水样,其中一份装入100 mL聚乙烯瓶中,并加入0.10 mL 1%质量浓度的碳酸镁溶液,防止叶绿素分解;另外一份水样装入500 mL聚乙烯瓶中,放入阴凉密闭泡沫箱中24 h内带回实验室进行分析测定。测定叶绿素a(Chl.a)质量浓度前将水样经过GF/F滤膜过滤,过滤后的滤膜经研钵研磨、90%丙酮提取后,采用紫外-可见分光光度法测定(TU-1901)。总有机碳(TOC)含量使用总有机碳分析仪测定(multiN/C 2100S,德国耶拿分析仪器股份公司,德国)。指标分析测定方法参考《水和废水监测分析方法
中华绒螯蟹湖面养殖区水-气界面CO2通量日变化为-0.136~0.172 μmol/(

图2 中华绒螯蟹养殖区与非养殖区CO2通量昼夜动态变化
Fig.2 Diurnal dynamics of CO2 fluxes in aquaculture and non-aquaculture areas of Eriocheir sinensis
气体通量是正值表示气体从水体进入大气(即排放),负值表示气体从大气进入水体中(即吸收)。
A positive value for gas flux indicates that the gas is going from the water body to the atmosphere (i.e., emission) and a negative value indicates that the gas is going from the atmosphere to the water body (i.e., absorption).
采样日的气象因子变化特征如图

图3 养殖区与非养殖区气象因子和现场测定水质指标的昼夜动态变化
Fig.3 Diurnal dynamics of meteorological factors and water quality indicators measured in situ in aquaculture and non-aquaculture areas
养殖区叶绿素a质量浓度呈现出先上升后下降的趋势,在21时达到最大值,非养殖区叶绿素a质量浓度呈现出先下降后上升的趋势,在17时达到最小值,两者的昼夜变化之间无显著性差异(

图4 养殖区与非养殖区叶绿素a质量浓度、总有机碳质量浓度和高锰酸盐指数的昼夜动态变化
Fig.4 Diurnal dynamics of mass concentration of chlorophyll a, mass concentration of total organic carbon, potassium permanganate index and salinity in aquaculture and non-aquaculture areas
养殖区与非养殖区亚硝态氮质量浓度分别为0.13~0.17和0.10~0.20 mg/L,两者昼夜变化之间无显著性差异(

图5 养殖区与非养殖区营养盐浓度的昼夜动态变化
Fig.5 Diurnal dynamics of concentration of nutrient concentration in aquaculture and non-aquaculture areas
如
CO2采样点 CO2 sampling points | WT | pH | ORP | WS | DO | T | NO3-N | PO | NH3-N | NO2-N | CODMn | TN | TP | Chl.a | TOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
养殖区 Aquaculture area |
0.9 | 0.35 | -0.72 | -0.39 | 0.73 |
0.9 |
-0.8 |
-0.7 | -0.72 |
0.9 | 0.29 | 0.18 | -0.40 | -0.35 | -0.61 |
非养殖区 Non-aquaculture area | 0.72 | -0.28 | -0.50 | -0.32 | 0.04 |
0.7 |
-0.9 |
-0.8 | 0.32 | -0.11 | -0.64 | 0.45 |
-0.9 | -0.25 |
-0.8 |
注: *表示显著性相关(P<0.05),**表示极显著性相关(P<0.01)。
Notes: * expresses significant correlation (P<0.05) and ** expresses highly significant correlation (P<0.01).
为了探讨环境因子对CO2通量影响的贡献大小,利用多元回归中的逐步回归分析法建立养殖区CO2通量与非养殖区CO2通量与各环境因子之间的最优回归方程:
Y=-2.76+0.04XT+0.17XpH | (1) |
Y=0.16-0.31XTP-0.01XTOC+0.20X | (2) |
多元回归中逐步回归分析结果表明,在环境因子中,气温和pH是影响养殖区CO2通量的主要环境因子(调整后的
CO2既可以在湖泊厌氧沉积物中产生,也可以在好氧水体中由有机物降解生成,同时,水体中的浮游生物以及其他水生植物可以通过呼吸作用产生CO
养殖区与非养殖区的水温和溶解氧质量浓度变化趋势基本一致,均表现为昼高夜低,这可能是导致养殖区与非养殖区水-气界面CO2通量在白天为正值,在夜晚为负值的原因之一。在白天随着水温和溶解氧浓度的升高,水体中微生物活性随之升
本研究中不管是养殖区还是非养殖区,CO2通量都处于一个较低水平,这可能是因为采样当天骆马湖处于丰水期,且风速较小。丰水期水位上升,较小的风力难以使得表层高溶氧水体与底层缺氧水体进行充分交换,不利于底层沉积物中微生物分解活动的进行和碳酸盐的分
通过多元逐步回归分析可知,气温和pH是影响养殖区水-气界面CO2通量的主要环境因子。养殖区CO2通量均与气温呈现极显著性正相关关系,这与RANTAKARI
总磷、硝态氮和总有机碳是影响非养殖区水-气界面CO2通量的主要环境因子。总磷和硝态氮主要通过影响非养殖区水体初级生产力和呼吸作用进而来影响CO2的产生和排
骆马湖中华绒螯蟹养殖区表现为CO2的微弱排放源,非养殖区表现为CO2的微弱吸收汇,但两者的CO2通量变化趋势均表现为昼高夜低,在夜间达到负值。气温和pH是影响养殖区水-气界面CO2通量的主要环境因子,总磷、硝态氮和总有机碳是影响非养殖区水-气界面CO2通量的主要环境因子。受丰水期等因素的影响,养殖区与非养殖区的CO2通量较小,但投饵等人类活动可能会促进养殖区的CO2排放。
利益冲突
作者声明本文无利益冲突
参考文献
周波涛. 全球气候变暖:浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5): 667-671. [百度学术]
ZHOU B T. Global warming: scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671. [百度学术]
ARAUJO-SILVA C L, SARMENTO V C, SANTOS P J. Climate change scenarios of increased CO2 and temperature affect a coral reef peracarid (Crustacea) community[J]. Marine Environmental Research, 2022, 173: 105518. [百度学术]
KOELBENER A, STROM L, EDWARDS P J, et al. Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil[J]. Plant and Soil, 2010, 326(1): 147-158. [百度学术]
解志龙, 姜晓东, 范陈伟, 等. 不同规格中华绒螯蟹成蟹的形态特征和组织系数比较[J].上海海洋大学学报, 2024, 33(1): 67-76. [百度学术]
XIE Z L, JIANG X D, FAN C W, et al. Morphological characters and tissue indices of adult Chinese mitten crabs (Eriocheir sinensis) with different body mass[J]. Journal of Shanghai Ocean University, 2024, 33(1): 67-76. [百度学术]
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2023中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023:49. [百度学术]
Ministry of Agriculture and Rural Affairs, Fisheries and Fishery Administration Bureau, Nation Aquatic Technology Promotion General Station, Chinese Fisheries Society. China Fishery Statistics Yearbook 2023 [M]. Beijing: China Agricultural Press, 2023: 49. [百度学术]
WU X G, CHENG Y X, SUI L Y, et al. Biochemical composition of pond-reared and lake-stocked Chinese mitten crab Eriocheir sinensis (H. Milne-Edwards) broodstock [J]. Aquaculture Research, 2007, 38(14): 1459-1467. [百度学术]
林海, 周刚, 李旭光, 等. 夏季池塘养殖中华绒螯蟹生态系统温室气体排放及综合增温潜势[J]. 水产学报, 2013, 37(3): 417-424. [百度学术]
LIN H, ZHOU G, LI X G, et al. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer[J]. Journal of Fisheries of China, 2013, 37(3): 417-424. [百度学术]
刘永茂, 付为国, 金梅娟, 等. 高温季节蟹塘不同水生植物对水质净化和温室气体排放的影响[J]. 生态与农村环境学报, 2020, 36(8): 1072-1079. [百度学术]
LIU Y M, FU W G, JIN M J, et al. Effects of different aquatic plants on water purification and greenhouse gas emission in crab pond in high temperature season[J]. Journal of Ecology and Rural Environment, 2020, 36(8): 1072-1079. [百度学术]
褚克坚, 叶福竹, 张建, 等. 骆马湖诺氟沙星、氧氟沙星归趋及风险评估[J]. 华中科技大学学报(自然科学版), 2023, 51(4): 128-135. [百度学术]
CHU G J, YE F Z, ZHANG J, et al. Fate and risk assessment of norfloxacin and ofloxacin in Luoma Lake[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(4): 128-135. [百度学术]
朱俊羽, 彭凯, 李宇阳, 等. 南水北调东线枢纽湖泊表层水体甲烷释放特征及潜在影响因素[J]. 环境科学, 2022, 43(4): 1958-1965. [百度学术]
ZHU J Y, PENG K, LI Y Y, et al. Emission of methane from a key lake in the eastern route of the South-to-North Water Transfer Proiect and the corresponding driving factors[J]. Environmental Science, 2022, 43(4): 1958-1965. [百度学术]
杨平, 仝川. 淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报, 2015, 35(20): 6868-6880. [百度学术]
YANG P, TONG C. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems: a review[J]. Acta Ecologica Sinica, 2015, 35(20): 6868-6880. [百度学术]
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 335-359. [百度学术]
BASTVIKEN D, TRANVIK L J, DOWNING J A, et al. Freshwater methane emissions offset the continental carbon sink[J]. Science, 2011, 331(6013): 50-50. [百度学术]
YANG R J, XU Z, LIU S L, et al. Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake[J]. Water Research, 2019, 153: 29-38. [百度学术]
陈永根, 李香华, 胡志新, 等. 中国八大湖泊冬季水-气界面CO2通量[J]. 生态环境, 2006, 15(4): 665-669. [百度学术]
CHEN Y G, LI X H, HU Z X, et al. Carbon dioxide flux on the water-air interface of the eight lake in China in winter[J]. Ecology and Environmental Sciences, 2006, 15(4): 665-669. [百度学术]
BOLPAGNI R, PIEROBON E, LONGHI D, et al. Diurnal exchanges of CO2 and CH4 across the water–atmosphere interface in a water chestnut meadow (Trapa natans L.) [J]. Aquatic Botany, 2007, 1 (87): 43-48. [百度学术]
李凌宇, 于瑞宏, 田明扬, 等. 黄河二氧化碳逸出时空变化及其影响因素——以头道拐水文站为例[J]. 生态学报, 2017, 37(22): 7636-7646. [百度学术]
LI X Y, YU D H, TIAN M Y, et al. Spatial-temporal variations and influencing factors of carbon dioxide evasion from the Yellow River: an example of the Toudaoguai Gauging station[J]. Acta Ecologica Sinica, 2017, 37(22): 7636-7646. [百度学术]
LAINI A, BARTOLI M, CASTALDI S, et al. Greenhouse gases (CO2, CH4 and N2O) in lowland springs within an agricultural impacted watershed (Po River Plain, northern Italy)[J]. Chemistry and Ecology, 2011, 27(2): 177-187. [百度学术]
国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 北京: 中国环境出版集团, 2002. [百度学术]
State Environmental Protection Administration of China. Methods for monitoring and analysis of water and wastwater(fourth edition) [M]. Beijing: China Environmental Science Press, 2002. [百度学术]
姜星宇, 张路, 姚晓龙, 等. 江西省水库温室气体释放及其影响因素分析[J]. 湖泊科学, 2017, 29(4): 1000-1008. [百度学术]
JIANG X Y, ZHANG L, YAO X L, et al. Greenhouse gas flux at reservoirs of Jiangxi Province and its influencing factors[J]. Journal of Lake Sciences, 2017, 29(4): 1000-1008. [百度学术]
顾世杰, 李思悦. 低等级河流CO2分压的时空变化及驱动因素——以汉江流域月河为例[J]. 湖泊科学, 2023, 35(1): 349-358. [百度学术]
GU S J, LI S Y. Spatiotemporal variations and drivers of the low order stream pCO2 in the Yue River of the Han River Catchment[J]. Journal of Lake Sciences, 2023, 35(1): 349-358. [百度学术]
王鹏, 王一丹, 申霞, 等. 南通沿海潮间带土-气界面CO2交换特征[J]. 中国环境科学, 2018, 38(2): 675-682. [百度学术]
WANG P, WANG Y D, SHEN X, et al. Characteristics of soil-air CO2 exchange fluxes in intertidalite of Nantong[J]. China Environmental Science, 2018, 38(2): 675-682. [百度学术]
韦章良, 韩红宾, 胡明, 等. 三沙湾盐田港海水养殖海域海-气界面CO2交换通量的时空变化[J]. 上海海洋大学学报, 2016, 25(1): 106-115. [百度学术]
WEI Z L, HAN H B, HU M, et al. Seasonal variation of sea-air CO2 flux in mariculture area in Yantian Harbor, Sansha Bay[J]. Journal of Shanghai Ocean University, 2016, 25(1): 106-115. [百度学术]
高杰, 黄屿玥, 韦冰, 等. 底栖动物(苏氏尾鳃蚓Branchiura sowerbyi和椭圆萝卜螺Radix swinhoei)对不同氮负荷程度沉积物脱氮的影响[J]. 环境科学学报, 2022, 42(11): 202-210. [百度学术]
GAO J, HUANG Y Y, WEI B, et al. Effect of macroinvertebrates(Branchiura sowerbyi and Radix swinhoei) on nitrogen removal of sediment with varying nitrogen load levels[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 202-210. [百度学术]
赵光辉, 杨平, 谭立山, 等. 闽江河口养虾塘养殖期和非养殖期CO2通量变化特征[J]. 环境科学研究, 2021, 30(4): 949-957. [百度学术]
ZHAO G H, YANG P, TAN L S, et al. Temporal variation of carbon dioxide flux between farming and non-farming stages in the land-based shrimp pond in the Min River Estuary[J]. Research of Environmental Sciences, 2021, 30(4): 949-957. [百度学术]
YANG P, ZHANG Y, LAI D Y F, et al. Fluxes of carbon dioxide and methane across the water-atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity and nitrate[J]. Science of the Total Environment, 2018, 635: 1025-1035. [百度学术]
CHANDA A, DAS S, BHATTACHARYYA S, et al. CO2 fluxes from aquaculture ponds of a tropical wetland: Potential of multiple lime treatment in reduction of CO2 emission[J]. Science of the Total Environment, 2019, 655: 1321-1333. [百度学术]
DELAVAUX C S, SCHEMANSKI J L, HOUSE G L, et al. Root pathogen diversity and composition varies with climate in undisturbed grasslands, but less so in anthropogenically disturbed grasslands[J]. The ISME Journal, 2020, 15(1): 304-317. [百度学术]
GAO C, WANG A, WU W, et al. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells[J]. Bioresource Technology, 2014, 167: 124-132. [百度学术]
黄菊, 高郭平, 程天宇, 等. 2015年冬季南黄海水文特征及海-气CO2通量分析[J]. 上海海洋大学学报, 2017, 26(5): 757-765. [百度学术]
HUANG J, GAO G P, CHENG T Y, et al. Hydrological features and air-sea CO2 fluxes of the Southern Yellow Sea in the winter of 2015[J]. Journal of Shanghai Ocean University, 2017, 26(5): 757-765. [百度学术]
朱俊羽, 彭凯, 李宇阳, 等. 不同水文情景下洪泽湖二氧化碳排放通量特征及影响因素[J]. 湖泊科学, 2022, 34(4): 1347-1358. [百度学术]
ZHU J Y, PENG K, LI Y Y, et al. Characteristics and influence factors of carbon dioxide efflux from Lake Hongze under different hydrological scenarios[J]. Journal of Lake Sciences, 2022, 34(4): 1347-1358. [百度学术]
李宇阳, 朱俊羽, 俞晓琴, 等. 巢湖二氧化碳排放特征及其潜在影响因素[J]. 中国环境科学, 2022, 42(1): 425-433. [百度学术]
LI Y Y, ZHU J Y, YU X Q, et al. Emission of carbon dioxide from Lake Chaohu and the potential influencing factors[J]. China Environmental Science, 2022, 42(1): 425-433. [百度学术]
崔嘉宇, 郭蓉, 宋兴伟, 等. 洪泽湖出入河流及湖体氮、磷浓度时空变化(2010-2019年)[J]. 湖泊科学, 2021, 33(6): 1727-1741. [百度学术]
CUI J Y, GUO R, SONG X W, et al. Spatio-temporal variations of total nitrogen and total phosphorus in lake and inflow/outflow rivers of Lake Hongze, 2010-2019[J]. Journal of Lake Sciences, 2021, 33(6): 1727-1741. [百度学术]
YUAN J J, XIANG J, LIU D Y, et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture[J]. Nature Climate Change, 2019, 9(4): 318-322. [百度学术]
吴兴熠, 肖尚斌, 张文丽, 等. 2016年10~11月宜昌莲心湖水——气界面CO2排放通量[J]. 湿地科学, 2020, 18(3): 368-373. [百度学术]
WU X Y, XIAO S B, ZHANG W L, et al. Carbon dioxide emission flux of water-air interface of Lianxinhu in Yichang from October to November, 2016[J]. Wetland Science, 2020, 18(3): 368-373. [百度学术]
LIN G M, LIN X B. Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment[J]. Water Research, 2022, 218: 118520. [百度学术]
蒲旖旎. “退养还湖”前后东太湖CO2和CH4通量的变化及影响因素[D]. 南京:南京信息工程大学, 2022. [百度学术]
PU Q N. The variations of CO2 and CH4 fluxes and impact factors inEast Lake Taihu for pre- and post- returning aquaculture to lakes[D]. Nanjing :Nanjing University of Information Science and Technology, 2022. [百度学术]
RANTAKARI M, PIRKKO K. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes[J]. Global Change Biology, 2010, 11(8): 1368-1380. [百度学术]
KARHU K, AUFFRET M D, DUNGAIT J A, et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature, 2014, 513(7516): 81-84. [百度学术]
HUTTUNEN J T, ALM J, LIIKANEN A, et al. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions[J]. Chemosphere, 2003, 52(3): 609-621. [百度学术]
程炳红, 郝庆菊, 江长胜. 水库温室气体排放及其影响因素研究进展[J]. 湿地科学, 2012, 10(1): 121-128. [百度学术]
CHENG B H, HAO Q J, JIANG C S. Research progress on the emission of greenhouse Gases from reservoir and its influence factors[J]. Wetland Science, 2012, 10(1): 121-128. [百度学术]
赵小杰, 赵同谦, 郑华, 等. 水库温室气体排放及其影响因素[J]. 环境科学, 2008, 29(8): 2377-2384. [百度学术]
ZHAO X J, ZHAO T Q, ZHENG H, et al. Greenhouse gas emission from reservoir and its influence factors[J]. Environmental Science, 2008, 29(8): 2377-2384. [百度学术]
SCHRIER-UIJL A P, VERAART A J, LEFFELAAR P A, et al. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands[J]. Biogeochemistry, 2011, 102(1-3): 265-279. [百度学术]
PENG X, WANG B, LIU C, et al. Diurnal variations of pCO2 in relation to environmental factors in the cascade reservoirs along the Wujiang River, China[J]. Chinese Journal of Geochemistry, 2012, 31(1): 41-47. [百度学术]
MOLOT L A, SCHIFF S l, VENKITESWARAN J J, et al. Low sediment redox promotes cyanobacteria blooms across a trophic range: implications for management[J]. Lake and Reservoir Management, 2021, 37(2): 120-142. [百度学术]
HUTTUNEN J T, LAPPALAINEN K M, SAARIJRVI E, et al. A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake[J]. Science of the Total Environment, 2001, 266(1-3): 153-158. [百度学术]
DAVIES J M, HESSLEIN R H, KELLY C A, et al. pCO2 method for measuring photosynthesis and respiration in freshwater lakes[J]. Journal of Plankton Research, 2003, 25(4): 385-395. [百度学术]
ZHU R B, LIU Y S, XU H, et al. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica[J]. Atmospheric Environment, 2010, 44(3): 304-311. [百度学术]
陈子栋, 黄林培, 陈丽, 等. 云南4个湖泊浮游生物碳、氮稳定同位素的季节变化及其影响因子[J]. 湖泊科学, 2021, 33(3): 761-773. [百度学术]
CHEN Z D, HUANG L P, CHEN L, et al. Seasonal variation and driving factors of carbon and nitrogen stable isotope values of plankton in four lakes of Yunnan Province[J]. Journal of Lake Sciences, 2021, 33(3): 761-773. [百度学术]