摘要
与中国南方紫菜栽培物种坛紫菜(Pyropia haitanensis)相比,圆紫菜(Pyropia suborbiculata)具有更强的耐高温性,但其圆形藻体不适合生产栽培。为此研究者采用人工诱变技术,从圆紫菜野生型品系中分离出了数个长型突变体。本研究在此基础上,采
紫菜(Pyropia)在系统分类学上隶属于红藻门(Rhodophyta)红藻纲(Rhodophyceae)红毛菜目(Bangiales)红毛菜科(Bangiaceae),是当今世界人工栽培的8种主要经济海藻之
近十几年来,随着栽培规模和密度的增加,群体内近交繁殖情况严重,导致坛紫菜野生种种质退化,产量和品质均有明显的下
圆紫菜(Pyropia suborbiculata)是一种暖温性海藻,在我国广泛分布于东海及南海区
为此,赵
本研究使用的圆紫菜长型突变体(CCT-2)是圆紫菜野生品系叶状体经紫外线诱变后,从其后代中分离出来
将约0.02 g的CCT-2的自由丝状体粉碎后均匀地接种到文蛤(Meretrix meretrix)壳上,黑暗培养3 d后,再转移入温度(23.0 ± 0.5) ℃、光密度10 μmol photons /(
采
当壳孢子苗生长到30 d时,从每个品系中随机挑选30棵叶状体,平均分成2组,分别置于温度为(23.0±0.5) ℃和(30.0±0.5) ℃的充气瓶(1 000 mL)中进行培养,其他培养条件:光密度50 μmol photons /(
将各品系的壳孢子液分别倒入培养皿(Φ= 9 cm)中,在(23.0 ± 0.5) ℃下静置培养1 h后,统计每个培养皿单个视野内的壳孢子萌发体平均数(×10倍,20个视野),再分别把壳孢子萌发体置于(23.0 ± 0.5)、(28.0 ± 0.5)、(30.0 ± 0.5)和(32.0 ± 0.5) ℃下培养,其他培养条件:光密度50 μmol photons /(
日龄45 d时,用紫外分光光度计(UV-2600,日本岛津公司)测定叶状体的主要光合色素含量,包括叶绿素a(Chlorophyll a, Chl.a)、藻红蛋白(Phycoerythrin, PE)、R-藻蓝蛋白(R-Phycocyanin, RPC)和别藻蓝蛋白(Allophycocyanin, APC),测定方法同文献[
日龄45 d时,从每个品系中分别随机挑选3棵叶状体,将其平铺在塑料板上,用双面刀片进行徒手切片,在光学显微镜(90i,Nikon)下测量藻体梢部、中部和基部的厚度,每个部位测量30个厚度值,取其平均值为该部位的厚度。
日龄45 d时,从每个品系叶状体的中部位置用打孔器(直径d=3 mm)各取9个圆盘体。随后,将后者分别转移至含有100 mL培养液的一次性塑料杯中进行充气培养,培养条件:温度为(23.0 ± 0.5)℃,光密度为50 μmol photons/(
待各品系的贝壳丝状体成熟后,每个品系各取1个贝壳置于含 50 mL 培养液的塑料杯中进行充气培养,培养条件:温度为(23.0 ± 0.5)℃,光密度为50 μmol photon/(
叶状体经辐照处理后,根据生长速度指标,从其放散的单孢子苗中挑选出3个,从其体细胞再生体中挑选出8个,再通过酶解技术,分别获得它们的纯合丝状体(品系)。通过比较选育品系与亲本品系的F1叶状体在生长速度、耐高温性、主要色素蛋白含量和壳孢子放散量等方面的特性,最终筛选出1个圆紫菜快速生长新品系,命名为PS-M1。
亲本CCT-2和新品系PS-M1的F1叶状体均为细长形。其中,CCT-2的基部和中部均呈褐绿色,梢部呈浅棕红色,而PS-M1的基部呈褐绿色,中部和梢部均呈浅棕红色。此外,CCT-2叶状体的皱褶较多,肉眼看不到明显的边缘刺;而PS-M1叶状体的皱褶较少,叶片较平整,日龄40 d时,即可肉眼看到基部边缘生长出较多边缘刺(

图版Ⅰ 日龄30 d的圆紫菜新品系(PS-M1)和亲本(CCT-2)的F1叶状体再在23和30 ℃下继续培养30 d的形态和生长Plate I Morphology and growth of the 30-day-old (at 23 °C) F1 gametophytic blades of the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata after being cultured at 23 and 30 °C for another 30 days
1-4. 在23 ℃下培养30、40、50和60 d的PS-M1叶状体;5-8. 在23 ℃下培养30、40、50和60 d的CCT-2叶状体;9-12. 在23 ℃下培养30 d后再在30 ℃培养0、10、20和30 d的PS-M1叶状体;13-16. 在23 ℃下培养30 d后再在30 ℃下培养0、10、20和30 d的CCT-2叶状体。图中比例尺均为5 cm。
1-4. The 30, 40, 50 and 60-day-old blades of PS-M1 cultured at 23 ℃; 5-8. The 30, 40, 50 and 60-day-old blades of CCT-2 cultured at 23 ℃; 9-12. The 30-day-old (at 23 °C) F1 gametophytic blades of PS-M1 after being cultured at 30 °C for another 0, 10, 20 and 30 days; 13-16. The 30-day-old (at 23 °C) F1 gametophytic blades of CCT-2 after being cultured at 30 °C for another 0, 10, 20 and 30 days. Scale bars = 5 cm.
与亲本CCT-2相比,新品系PS-M1叶状体的生长更快。日龄30 d时,PS-M1的平均体长为4.6 cm,是CCT-2的1.8倍;日龄60 d时,PS-M1的平均体长达到68.1 cm,是CCT-2的2.7倍(
培养天数 | 平均体长Mean length/cm | 长宽比 Length-width ratio | |||
---|---|---|---|---|---|
Culture days/d | PS-M1 | CCT-2 | PS-M1 | CCT-2 | |
30 | 4.6±0.2 |
2.5±0. | 14.1±1.7 |
10.4±1. | |
35 | 12.4±0.7 |
5.9±0. | 18.9±3.1 |
13.8±2. | |
40 | 20.1±1.1 |
10.5±0. | 21.2±3.2 |
13.5±2. | |
45 | 31.4±1.7 |
14.4±0. | 26.0±4.9 |
14.1±2. | |
50 | 43.9±1.9 |
19.1±0. | 32.2±5.9 |
12.3±2. | |
55 | 55.9±1.2 |
23.0±1. | 25.4±2.7 |
12.2±1. | |
60 | 68.1±1.9 |
25.5±1. | 26.3±4.2 |
10.9±1. |
注: **表示差异极显著(P<0.01)。
Notes: ** indicates highly significantly difference (P<0.01) between PS-M1 and CCT-2.

图1 圆紫菜新品系(PS-M1)和亲本(CCT-2)F1叶状体的平均单棵鲜质量
Fig.1 Wet mass per F1 gametophytic blade of the new strain (PS-M1) and the parental strain (CCT-2) in P. suborbiculata
在整个培养期间,两个品系的叶状体长宽比值均呈先升后降的趋势,但PS-M1的长宽比值远大于亲本CCT-2,差异极显著(P<0.01)。PS-M1和CCT-2的长宽比值最大值分别为32.2和14.1,分别出现在日龄的50和45 d(
在30 ℃下培养,两个品系叶状体的颜色均逐渐变深变红。其中,再培养20 d时,CCT-2叶状体出现卷曲的状况,至30 d时,卷曲程度进一步加深,受此影响,其生长几乎停滞。而PS-M1叶状体受高温影响相对较小,培养期间,其叶片保持了较好的平整度和生长速度(图版Ⅰ-9~16)。再培养30 d时,PS-M1叶状体的体长达到了32.1 cm,相比初始时增加了6.4倍,而CCT-2叶状体的体长仅为9.8 cm,相比初始时增加了3.0倍(

图2 日龄30 d的圆紫菜新品系(PS-M1)和亲本(CCT-2)的F1叶状体再在30 ℃下继续培养30 d的生长曲线
Fig.2 Growth curves of the 30-day-old (at 23 °C) F1 gametophytic blades of the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata after being cultured at 30 °C for another 30 days

图3 日龄30 d的圆紫菜新品系(PS-M1)和亲本(CCT-2)的F1叶状体再在23和30 ℃下继续培养30 d的最大光化学效率(Fv /Fm)值
Fig.3 Maximum photochemical efficiency (Fv /Fm) of the 30-day-old (at 23 °C) F1 gametophytic blades of the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata after being cultured at 23 and 30 °C for another 30 days
在23、28和30 ℃下培养7和14 d时,两个品系的壳孢子萌发体其细胞排列均较正常。只是随着培养温度的增加,它们的细胞分裂速度逐渐变慢,颜色变深变红(

图版Ⅱ 在23、28和30 ℃下培养7和14 d,以及在32 ℃下培养3 d的圆紫菜新品系(PS-M1)和亲本(CCT-2)的壳孢子萌发体Plate Ⅱ Conchospores germlings of the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata after being cultured at 23, 28 and 30 ℃ for 7 and 14 days, and at 32 ℃ for 3 days
1-3. 在23、28和30 ℃下培养7 d的PS-M1壳孢子萌发体;4-6. 在23、28和30 ℃下培养14 d的PS-M1壳孢子萌发体;8-10. 在23、28和30 ℃下培养7 d的CCT-2壳孢子萌发体;11-13. 在23、28和30 ℃下培养14 d的CCT-2壳孢子萌发体;7和14:分别为在32 ℃下培养3 d的PS-M1和CCT-2壳孢子萌发体。图中比例尺均为50 μm。
1-3. Conchospores germlings of PS-M1 cultured at 23, 28 and 30 ℃ for 7 days; 4-6. Conchospores germlings of PS-M1 cultured at 23, 28 and 30 ℃ for 14 days; 8-10. Conchospores germlings of CCT-2 cultured at 23, 28 and 30 ℃ for 7 days; 11-13. Conchospores germlings of CCT-2 cultured at 23, 28 and 30 ℃ for 14 days; 7, 14. Conchospores germlings of PS-M1 and CCT-2 cultured at 32 ℃ for 3 days. Scale bars = 50 μm.
统计两个品系在不同温度下的壳孢子萌发体存活率,结果显示,在23、28和30 ℃下培养3 d,PS-M1壳孢子萌发体的存活率分别为93.9%、88.4%和63.6%(
培养天数 Culture days/d | PS-M1 | CCT-2 | |||||||
---|---|---|---|---|---|---|---|---|---|
23 ℃ | 28 ℃ | 30 ℃ | 32 ℃ | 23 ℃ | 28 ℃ | 30 ℃ | 32 ℃ | ||
3 | 93.9±2.1 | 88.4±4.4 | 63.6±4.5 | 6.2±0.8 | 92.6±1.5 | 82.9±4.0 | 56.7±6.2 | 6.4±0.5 | |
7 | 90.3±3.5 | 85.8±5.2 | 54.4±1.9 | 0 | 89.0±4.6 | 80.4±4.5 | 50.0±2.7 | 0 | |
14 | 89.9±3.9 | 81.7±4.0 | 47.4±2.4 | 0 | 87.4±4.0 | 76.7±4.6 | 42.2±3.0 | 0 |
日龄45 d时,PS-M1叶状体的叶绿素a、藻红蛋白和R-藻蓝蛋白含量分别为6.5、37.2和15.7 mg/g,比CCT-2提高了20.4%、19.6%和44.0%,差异均极显著(P<0.01)。PS-M1叶状体的别藻蓝蛋白含量为12.0 mg/g,与CCT-2相比无显著性差异(P>0.05)(
品系Strains | 叶绿素a | 藻红蛋白 | R-藻蓝蛋白 | 别藻蓝蛋白 | 总藻胆蛋白Phycobiliprotei | |||
---|---|---|---|---|---|---|---|---|
Chl.a | PE | RPC | APC | |||||
PS-M1 | 6.5±0.2 | 37.2±0.4 | 15.7±0.1 | 12.0±0.3 | 64.9 | |||
CCT-2 | 5.4±0.02 | 31.1±0.6 | 10.9±0.6 | 10.7±0.6 | 52.8 | |||
(+20. |
(+19. |
(+44. | (+12.1) |
(+22. |
注: a.包括PE,RPC和APC;括号中数字表示新品系(PS-M1)与亲本(CCT-2)相比的变化量百分比;**表示差异极显著(P<0.01)。
Notes: a. Phycobiliprotein concludes PE, RPC and APC; values in parentheses indicate the percentage of changes of the new strain PS-M1 compared with CCT-2; ** indicates highly significantly different (P<0.01).
日龄45 d时,新品系PS-M1和亲本CCT-2叶状体各部位的厚度均为基部>中部>梢部(
品系Strains | 梢部 Apical | 中部 Middle | 基部 Basal | 平均厚度Mean thickness |
---|---|---|---|---|
PS-M1 | 30.4±0.3 | 34.6±0.6 | 35.6±0.2 | 33.6 |
CCT-2 | 33.6±0.3 | 41.6±1.7 | 44.7±1.8 | 39.9 |
(-9.5%**) |
(-16.8 |
(-20.4 | (-15.8%) |
注: 括号中数字表示新品系(PS-M1)与亲本(CCT-2)相比的变化量百分比; **表示差异极显著(P<0.01)。
Notes: Values in parentheses indicate the percentage of changes of the new strain PS-M1 compared with CCT-2; ** indicates highly significantly different (P<0.01).
在培养圆盘体的第1天,即可观察到两个品系的藻体均开始放散单孢子。在随后的8 d内,两个品系均可持续放散,且放散量呈增大的趋势(

图4 圆紫菜新品系(PS-M1)和亲本(CCT-2)单个圆盘体连续8 d的单孢子放散量
Fig.4 Numbers of the released archeospores daily from the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata during 8 days
两个品系的贝壳丝状体均较易放散壳孢子,在充气刺激过夜后,次日便可看到壳孢子的放散。两个品系大量放散壳孢子的时间,主要集中在开始放散的前3 d(

图5 圆紫菜新品系(PS-M1)和亲本(CCT-2)贝壳丝状体连续10 d的壳孢子放散量
Fig.5 Numbers of the released conchospores daily from the new strain (PS-M1) and parental strain (CCT-2) in P. suborbiculata during 10 days
目前,常用的紫菜育种技术为杂交育种和诱变育种。杂交育种主要利用杂种优势,即利用优良性状不同的个体进行交配或结合产生的杂交子代,在生长、生化特性等方面优于亲
圆紫菜野生品系的叶状体形状为圆形或肾脏形,不适合进行栽培。近几年,赵
坛紫菜壳孢子采苗的适宜温度为25~27 ℃,但近年来,壳孢子采苗后高温天气频发,严重影响了壳孢子萌发体的存活与生
近十年来,受全球气候变暖的影响,在坛紫菜栽培的第1个月左右,海水温度回升现象时常发生,这影响了坛紫菜叶状体的生长,严重时会引起大规模的掉苗和烂苗,给生产造成巨大的经济损失,致使近些年福建省坛紫菜的栽培规模和产量呈逐年下降的趋势,当地紫菜产业受到较大的冲
紫菜藻体中的光合色素主要包括叶绿素a、藻红蛋白、R-藻蓝蛋白和别藻蓝蛋白,后三者统称为藻胆蛋
紫菜叶状体释放单孢子是一种无性繁殖方式,若放散量太大,会降低叶状体的生长速度,并降低产量,但如果放散量适量,对增加栽培网帘上的苗种数、延长收获期、提高产量和品质等均有重要意
综上,本研究采用人工诱变育种技术,选育出一个生长较快、耐高温性强、品质较好、壳孢子放散量大的圆紫菜新品系PS-M1,有望被栽培在福建和广东等南方沿海,解决当地坛紫菜产业受高温影响的问题。
利益冲突
作者声明本文无利益冲突
参考文献
FAO.The state of world fisheries and aquaculture[R]. Rome: FAO, 2022: 45. [百度学术]
朱建一, 严兴洪, 丁兰平, 等.中国紫菜原色图集[M]. 北京: 中国农业出版社, 2016: 22. [百度学术]
ZHU J Y, YAN X H, DING L P, et al.Color atlas of Chinese laver[M]. Beijing: China Agriculture Press, 2016: 22. [百度学术]
李西林.论坛紫菜壳孢子采苗时间[J]. 福建水产, 1992(2): 40-42. [百度学术]
LI X L.Time for collecting the conchospores of Porphyra yezoensis[J]. Journal of Fujian Fisheries, 1992(2): 40-42. [百度学术]
陈昌生, 纪德华, 谢潮添, 等.坛紫菜耐高温品系选育及经济性状的初步研究[J]. 海洋学报, 2008, 30(5): 100-106. [百度学术]
CHEN C S, JI D H, XIE C T, et al.Preliminary study on selecting the high temperature resistance strains and economic traits of Porphyra haitanensis[J]. Haiyang Xuebao, 2008, 30(5): 100-106. [百度学术]
吕峰, 严兴洪, 刘长军, 等.坛紫菜耐高温品系的选育与海区中试[J]. 上海海洋大学学报, 2010, 19(4): 457-462. [百度学术]
LYU F, YAN X H, LIU C J, et al.Selection of a high-temperature tolerant strain of Porphyra haitanensis and its cultivation in sea area[J]. Journal of Shanghai Ocean University, 2010, 19(4): 457-462. [百度学术]
王长青, 严兴洪, 黄林彬, 等.坛紫菜优良品系“申福2号”的特性分析与海区中试[J]. 水产学报, 2011, 35(11): 1658-1667. [百度学术]
WANG C Q, YAN X H, HUANG L B, et al.Characterization of an improved strain (SF-2) of Porphyra haitanensis (Bangiales, Rhodophyta) and its pilot cultivation in mariculture farm[J]. Journal of Fisheries of China, 2011, 35(11): 1658-1667. [百度学术]
GUO X J, HUANG J B, LUO Y, et al.Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models[J]. Theoretical and Applied Climatology, 2017, 128(3/4): 507-522. [百度学术]
曾呈奎, 张峻甫.我国的紫菜与紫菜养殖[J]. 生物学通报, 1956(3): 29-33. [百度学术]
ZENG C K, ZHANG J F.Chinese Porphyras and its cultivation[J]. Bulletin of Biology, 1956(3): 29-33. [百度学术]
MONOTILLA W D, NOTOYA M.Morphological and physiological responses of Porphyra suborbiculata Kjellman (Bangiales, Rhodophyta) blades from five localities[J]. Botanica Marina, 2004, 47(4): 323-334. [百度学术]
石佩峰, 丁洪昌, 严兴洪.圆紫菜壳孢子萌发体和叶状体的耐高温性观察[J]. 上海海洋大学学报, 2023, 32(1): 60-67. [百度学术]
SHI P F, DING H C, YAN X H.Observation of high-temperature resistance of the conchospore germlings and blade in Pyropia suborbiculata[J]. Journal of Shanghai Ocean University, 2023, 32(1): 60-67. [百度学术]
张德瑞, 郑宝福.中国的紫菜及其地理分布[J]. 海洋与湖沼, 1962, 4(3/4): 183-188. [百度学术]
ZHANG D R, ZHENG B F.The Chinese porphyras and their geographical distribution[J]. Oceanologia et Limnologia Sinica, 1962, 4(3/4): 183-188. [百度学术]
赵爽.紫外线对圆紫菜的诱变效果与突变体的分离[D]. 上海: 上海海洋大学, 2018. [百度学术]
ZHAO S.Mutagenic effects of short-wavelength ultraviolet rays (UV-C) on Pyropia suborbiculata Kjellman and isolation of mutants[D]. Shanghai: Shanghai Ocean University, 2018. [百度学术]
SHI P F, DING H C, ZHAO S, et al.Isolation and characterization of a long-type mutant in Phycocalidia suborbiculata[J]. Journal of Applied Phycology, 2022, 34(2): 1007-1015. [百度学术]
严兴洪, 梁志强, 宋武林, 等.坛紫菜人工色素突变体的诱变与分离[J]. 水产学报, 2005, 29(2): 166-172. [百度学术]
YAN X H, LIANG Z Q, SONG W L, et al.Induction and isolation of artificial pigmentation mutants in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta)[J]. Journal of Fisheries of China, 2005, 29(2): 166-172. [百度学术]
严兴洪, 王素娟.紫菜体细胞发育与分化的研究[J]. 海洋科学, 1989(6): 28-32. [百度学术]
YAN X H, WANG S J.Studies on the development and differentiation of somatic cell in Porphyra SPP. (Rhodophyta)[J]. Marine Sciences, 1989(6): 28-32. [百度学术]
檀应华, 黄林彬, 严兴洪.坛紫菜耐低盐品系的选育与特性分析[J]. 海洋与湖沼, 2014, 45(3): 504-512. [百度学术]
TAN Y H, HUANG L B, YAN X H.Selection and characterization of a low-salinity tolerant strain in Pyropia haitanensis (Bangiales, Rhodophyta)[J]. Oceanologia et Limnologia Sinica, 2014, 45(3): 504-512. [百度学术]
ARUGA Y, MIURA A.In vivo absorption spectra and pigment contents of the two types of color mutants of Porphyra[J]. Journal of Phycology of Japan, 1984, 32: 243-250. [百度学术]
高洪峰.不同生长期坛紫菜中藻胆蛋白的含量变化[J]. 海洋与湖沼, 1993, 24(6): 645-648. [百度学术]
GAO H F.The variation in the contents of phycobiliproteins from Porphyra haitanensis collected in different growing stages[J]. Oceanologia et Limnologia Sinica, 1993, 24(6): 645-648. [百度学术]
李淑平, 严兴洪
LI S P, YAN X H.Isolation and characterization of an improved strain of Pyropia dentata (Bangiales, Rhodophyta) after being irradiated by
吴宏肖, 严兴洪, 宋武林, 等.坛紫菜与Pyropia radi种间杂交重组优良品系的选育与特性分析[J]. 水产学报, 2014, 38(8): 1079-1088. [百度学术]
WU H X, YAN X H, SONG W L, et al.Selection and characterization of an improved strain produced by genetic recombinant of interspecific hybridization between Pyropia haitanensis and Pyropia radi[J]. Journal of Fisheries of China, 2014, 38(8): 1079-1088. [百度学术]
裘叶帆, 丁洪昌, 唐隆晨, 等.坛紫菜叶状体颜色与长度、宽度和厚度的相关性分析[J]. 上海海洋大学学报, 2024, 33(2): 371-379. [百度学术]
QIU Y F, DING H C, TANG L C, et al.Correlation analysis of blade color with length, width and thickness in Pyropia haitanensis[J]. Journal of Shanghai Ocean University, 2024, 33(2): 371-379. [百度学术]
刘美君, 黄林彬, 严兴洪.条斑紫菜种内杂交优良品系的筛选与特性分析[J]. 中国水产科学, 2015, 22(1): 33-43. [百度学术]
LIU M J, HUANG L B, YAN X H.Isolation and characterization of the improved strain HW-4 by intraspecific hybridization in Pyropia yezoensis[J]. Journal of Fishery Sciences of China, 2015, 22(1): 33-43. [百度学术]
NIWA K, HAYASHI Y, ABE T, et al.Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation[J]. Phycological Research, 2009, 57(3): 194-202. [百度学术]
李勇斌, 左正宏, 李博文, 等.MNNG(N-甲基-N′-硝基-N-亚硝基胍)诱变坛紫菜原生质体的初步研究[J]. 厦门大学学报(自然科学版), 2006, 45(3): 400-403. [百度学术]
LI Y B, ZUO Z H, LI B W, et al.Studies on protoplasts morphological change and growth of Porphyra haitanesis treated with mutagen MNNG[J]. Journal of Xiamen University (Natural Science), 2006, 45(3): 400-403. [百度学术]
LEE H J, CHOI J I.Isolation and characterization of a high-growth-rate strain in Pyropia yezoensis induced by ethyl methane sulfonate[J]. Journal of Applied Phycology, 2018, 30(4): 2513-2522. [百度学术]
丁洪昌.坛紫菜良种的培育[D]. 上海: 上海海洋大学, 2020. [百度学术]
DING H C.Breeding of new varieties of Pyropia haitanensis[D]. Shanghai: Shanghai Ocean University, 2020. [百度学术]
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会.中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2023: 21. [百度学术]
Ministry of Agriculture and Rural Fisheries Administration, National Aquatic Technology Promotion Station, Chinese Fisheries Society.China fisheries statistic yearbook[M]. Beijing: China Agriculture Press, 2023: 21. [百度学术]
DING H C, FEI Q J, ZHANG P, et al.Isolation and characterization of a heat-resistant strain with high yield of Pyropia haitanensis induced by ultraviolet ray[J]. Aquaculture, 2020, 521: 735050. [百度学术]
ALLAKHVERDIEV S I, KRESLAVSKI V D, KLIMOV V V, et al.Heat stress: an overview of molecular responses in photosynthesis[J]. Photosynthesis Research, 2008, 98(1/3): 541-550. [百度学术]
张守仁.叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448. [百度学术]
ZHANG S R.A discussion on Chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4): 444-448. [百度学术]
黄林彬, 黄文, 严兴洪.条斑紫菜两个耐高温品系的耐低盐特性[J]. 水产学报, 2020, 44(2): 222-233. [百度学术]
HUANG L B, HUANG W, YAN X H.Low-salinity tolerance of two high-temperature resistant strains in Pyropia yezoensis[J]. Journal of Fisheries of China, 2020, 44(2): 222-233. [百度学术]
陈伟洲, 许俊宾, 吴文婷, 等.三种紫菜叶状体对高温胁迫的生理响应[J]. 热带海洋学报, 2015, 34(1): 49-55. [百度学术]
CHEN W Z, XU J B, WU W T, et al.Physiological responses of three species of Pyropia thallus to high temperature stress[J]. Journal of Tropical Oceanography, 2015, 34(1): 49-55. [百度学术]
KITADE Y, MIYABE Y, YAMAMOTO Y, et al.Structural characteristics of phycobiliproteins from red alga Mazzaella japonica[J]. Journal of Food Biochemistry, 2018, 42(1): e12436. [百度学术]
ZHANG T, LI J F, MA F, et al.Study of photosynthetic characteristics of the Pyropia yezoensis thallus during the cultivation process[J]. Journal of Applied Phycology, 2014, 26(2): 859-865. [百度学术]