文章摘要
宋利明,许回,陈明锐,EBANGO NGANDO Narcisse.毛里塔尼亚海域日本鲭时空分布与海洋环境的关系[J].上海海洋大学学报,2020,29(6):868-877
毛里塔尼亚海域日本鲭时空分布与海洋环境的关系
Relationship between spatiotemporal distribution of chub mackerel and marine environment variables in the waters near Mauritania
投稿时间:2019-07-21  修订日期:2020-02-07
DOI:10.12024/jsou.20190702746
中文关键词: 日本鲭  时空分布  海洋环境  分位数回归  栖息地综合指数  毛里塔尼亚水域
英文关键词: chub mackerel  spatiotemporal distribution  marine environment  quantile regression  integrated habitat index  Mauritania waters
基金项目:2017年农业农村部海洋渔业资源调查与探捕项目(D-8006-17-0138)
作者单位
宋利明 上海海洋大学 海洋科学学院, 上海 201306
国家远洋渔业工程技术研究中心, 上海 201306
大洋渔业资源可持续开发教育部重点实验室, 上海 201306
远洋渔业协同创新中心, 上海 201306 
许回 上海海洋大学 海洋科学学院, 上海 201306 
陈明锐 上海海洋大学 海洋科学学院, 上海 201306 
EBANGO NGANDO Narcisse 上海海洋大学 海洋科学学院, 上海 201306 
摘要点击次数: 258
全文下载次数: 187
中文摘要:
      根据2017年9月20日至12月31日在毛里塔尼亚海域112个站点的调查数据,研究日本鲭(Scomber japonicus)的时空分布规律,并采用分位数回归的方法对随机选取的78%的站点数据建立其单位捕捞努力量渔获量(catch per unit effort,CPUE)与叶绿素a浓度、海表面温度、海表面盐度的关系模型,并利用剩余22%的站点数据验证所建立的模型的有效性,利用广义加性模型(GAM)评价环境因子的影响程度。根据分位数模型,计算日本鲭的栖息地综合指数(integrated habitat index,IHI),对建模站点和验证站点的CPUE实测值与预测值进行Wilcoxon(符号秩)检验,用Spearman相关系数结合双尾检验,检验其CPUE实测值与预测值之间的相关性,分析IHI与CPUE的关系。结果表明:海表面温度对日本鲭CPUE的影响最显著,其次是温盐的交互作用和海表面盐度,叶绿素a浓度对其无显著影响;建模站点和验证站点的CPUE预测值与实测值间皆无显著性差异;IHI模型对CPUE具有良好的预测效果;IHI分布较高的海域为17°25'W~17°45'W和20°15'N~20°45'N。根据上述结果,建议我国渔船在下半年作业时,作业范围应集中在17°25'W~17°45'W和20°15'N~20°45'N区域,以提高渔获产量。
英文摘要:
      From data collected at 112 sites in waters near Mauritania from September 20th to December 31st, 2017, the relationship model based on Quantile Regression method was established using 78% randomly selected sites between catch per unit effort(CPUE) of chub mackerel (Scomber japonicus) and environmental factors such as chlorophyll-a concentration, sea surface temperature and sea surface salinity, and the predicted CPUE model was validated by the remaining 22% site data, then General Additive Model (GAM) was used to evaluate the impact of environmental factors to CPUE. The integrated habitat index (IHI) of chub mackerel in the waters near Mauritania was calculated. The predicted CPUE values of the modeled and validated sites were tested by Wilcoxon test. The predicted CPUE values were tested by Spearman correlation and double tail tests. The relationship between IHI and CPUE was analyzed. The results showed that:the most significant environmental factor affecting CPUE of chub mackerel was sea surface temperature, followed by the interaction between temperature and salinity and sea surface salinity, while chlorophyll-a concentration had no significant effect on CPUE; there were no significant differences between the predicted CPUE and the nominal CPUE of the modeled sites or the verified sites; the IHI model had good predictive ability on CPUE of chub mackerel; the higher IHI were defined in the areas of 17°25'W-17°45'W and 20° 15'N-20 °45'N. It was suggested that the Chinese fishing vessels should concentrate their fishing efforts in this area on the second half of the year in order to increase their catch.
HTML 查看全文     下载PDF阅读器
关闭