摘要
为了解在纯培养条件及胆盐胁迫下来源于淡水产品的不同毒力基因型副溶血性弧菌(Vibrio parahaemolyticus)单个及混合菌株生物被膜的形成特征,通过结晶紫染色法和CCK-8法检测生物被膜的形成量和细胞活力,并借助共聚焦激光扫描显微镜(Confocal laser scanning microscopy,CLSM)对被膜结构进行可视化观察,最后通过二喹啉甲酸(Bicinchoninic acid,BCA)法及苯酚-硫酸法对胆盐处理前后的被膜胞外蛋白和胞外多糖含量进行定量分析。结果表明,胆盐处理抑制副溶血性弧菌生物被膜的形成,使被膜形成量和细胞活力显著下降,影响被膜系统的聚集程度和混乱程度,破坏被膜结构的同时影响胞外蛋白和胞外多糖的合成和分泌。含有tdh基因的菌株能够形成较多且较稳定的生物被膜,混合菌株在胆盐刺激下表现出更强的适应性,能够迅速做出响应以抵御这种胁迫,从而保证菌体更加稳定地存活。这一研究结果为副溶血性弧菌混合生物被膜的形成和控制提供了新的理论支持,对于探讨淡水产品中携带副溶血性弧菌对食品安全和人体健康造成的影响具有重要意义,为进一步研究其在人体肠道中的适应机制和防控提供了重要参考依据。
副溶血性弧菌(Vibrio parahaemolyticus,VP)是一种革兰氏阴性嗜盐球杆菌,普遍存在于海洋、河口生态系统及水产
VP能够在双鞭毛系统的辅助下自由移动以适应不同变化的环境并定殖,进而形成生物被
随着中国居民饮食结构的改变,淡水产品已成为中国零售水产品市场总量的重要组成部分,现已被报道为食源性致病菌传播的潜在媒介;而日益发展的沿海和内陆地区之间的物流运输和消费互通,使得致病性嗜盐弧菌不断从我国沿海向内陆地区扩
主要材料:硫代硫酸盐柠檬酸盐胆盐蔗糖琼脂培养基(Thiosulfate citrate bile salts sucrose agar culture medium,TCBS,北京陆桥技术有限责任公司);胰蛋白胨大豆肉汤培养基(Trypticase Soy Broth,TSB,北京陆桥技术有限责任公司);20×磷酸盐缓冲液[PBS,生工生物工程(上海)股份有限公司];结晶紫(北京索莱宝科技有限公司);4%戊二醛;SYBR Green Ⅰ 染料(上海吉至生化科技有限公司);增强型CCK-8试剂盒(上海碧云天生物技术有限公司);BCA蛋白浓度测定试剂盒(北京索莱宝科技有限公司);苯酚(上海麦克林生化科技股份有限公司);无菌无酶细胞刮刀(常德比克曼生物科技有限公司);共聚焦培养皿。
仪器:OptiMai
本实验3株副溶血性弧菌的检测基因信息见文献[
菌株编号 Strain number | 毒力基因 Virulence gene | 来源 Source | ||
---|---|---|---|---|
tdh | trh | tlh | ||
VPE36 VPE28 VPE38 |
- + - |
+ - - |
+ + + | 淡水环境 |
将-80 ℃冰箱甘油管中冻存的VP划线接种于TCBS琼脂上,于37 ℃过夜孵育10~12 h,挑取单菌落接种到含3% NaCl的TSB培养基中进行二次活化,37 ℃下摇床培养(200 r/min)后获得稳定的菌液培养基,将菌液稀释到1
称取0.06 g和0.12 g胆盐于锥形瓶中,分别加入200 mL含3% NaCl的TSB培养基,高温灭菌15 min后得到质量浓度分别为0.03 g/100 mL和0.06 g/100 mL的含胆盐培养
将细菌培养物和含3% NaCl的TSB培养基按比例转移到24孔板中进行生物被膜的培养。实验组见
混合后名称 Mixed name | VPE36/μL | VPE28/μL | VPE38/μL | 含3% NaCl的TSB培养基 TSB medium containing 3% NaCl/μL |
---|---|---|---|---|
VPE36 | 9 | - | - | 991 |
VPE28 | - | 9 | - | 991 |
VPE38 | - | - | 9 | 991 |
VPE-M1 | 4.5 | 4.5 | - | 991 |
VPE-M2 | 4.5 | - | 4.5 | 991 |
VPE-M3 | - | 4.5 | 4.5 | 991 |
VPE-AM | 3 | 3 | 3 | 991 |
将只添加991 μL含3% NaCl的TSB培养基而不添加菌液的处理作为对照。同样地,将稳定菌液和含不同浓度胆盐的TSB培养基也分别按照
生物被膜培养结束后,将24孔板取出,弃去上层菌液,每孔用0.01 mol/L PBS洗2~3次以除去浮游菌,在60 ℃下放置30 min进行烘干。每孔加入1 mL 0.1%的结晶紫在室温下染色20~30 min,用0.01 mol/L PBS清洗3次以除去多余的结晶紫后,用1 mL 95%的乙醇溶解20 min,吹打搅拌使被膜悬浮,吸取200 μL至96孔板中,用酶标仪检测其在600 nm处的吸光度值(OD600
采用增强型CCK-8试剂盒检测生物被膜细胞活
将单种和混合生物被膜直接形成在共聚焦平皿上,按照1.3.3节的方法培养,培养至被膜形成量最大的时刻通过CLSM进行观察,参照文献[
检测副溶血性弧菌在纯培养和胆盐胁迫下生物被膜形成过程中的胞外多糖和胞外蛋白含量,在前人的操作上稍作改
如

图1 3种处理条件下不同毒力基因型副溶血性弧菌随时间梯度变化的生物被膜形成量
Fig.1 Biofilm formation of V. parahaemolyticus with different virulence genotypes under three treatment conditions as a function of time gradient
如

图2 3种处理条件下不同毒力基因型副溶血性弧菌随时间梯度变化的生物被膜细胞活力
Fig.2 Biofilm cell viability of V. parahaemolyticus with different virulence genotypes under three treatment conditions as a function of time gradient
将纯培养和两种浓度胆盐胁迫下的各菌株达到生物被膜最大形成量及细胞活力最大时进行显著性差异对比,由

图3 纯培养条件以及两种浓度胆盐胁迫下生物被膜形成量及细胞活力显著性差异对比
Fig.3 Comparison of significant differences in biofilm formation and cell viability under pure culture conditions and two concentrations of bile salts stress
图中的*表示组间存在显著性差异(P<0.05);*表示P<0.05,**表示P<0.01,***表示P<0.001。
* in the figure indicates significant differences between groups (P<0.05); * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
如

图4 纯培养条件下不同毒力基因型副溶血性弧菌单菌和混合菌株生物被膜的可视化结构
Fig.4 Visual structure of biofilm of single and mixed strains of V. parahaemolyticus with different virulence genotypes under pure culture conditions

图5 0.06 g/100 mL胆盐胁迫下不同毒力基因型副溶血性弧菌单菌和混合菌株生物被膜的可视化结构
Fig.5 Visual structure of biofilm of single and mixed strains of V. parahaemolyticus with different virulence genotypes under 0.06 g/100 mL bile salts stress
EPS是细菌生物被膜的主要成
将所得OD值分别代入线性方程(图

图6 蛋白质和葡萄糖标准曲线
Fig.6 Standard curves for protein and glucose
菌株编号 Strain number | 纯培养 Pure culture | 0.06 g/100mL胆盐胁迫 0.06 g/100mL bile salts stress |
---|---|---|
VPE36 |
97.33±0.6 |
10.58±1.9 |
VPE28 |
121.37±2.3 |
55.02±4.4 |
VPE38 |
30.38±3.4 |
7.65±0.8 |
VPE-M1 |
120.54±4.8 |
36.52±3.7 |
VPE-M2 |
90.24±4.2 |
12.08±2.0 |
VPE-M3 |
115.27±2.7 |
31.02±0.5 |
VPE-AM |
90.91±8.6 |
28.08±1.6 |
注: 结果表示为平均值±标准偏差(n=3),同一列不同字母表示存在统计学显著差异(P<0.05)。
Notes: Results are expressed as Mean ± Standard deviation (n=3), and different letters in the same column indicate statistically significant differences (P<0.05).
菌株编号 Strain number | 纯培养 Pure culture | 0.06 g/100 mL胆盐胁迫 0.06 g/100 mL bile salts stress |
---|---|---|
VPE36 |
56.42±3.5 |
11.11±1.4 |
VPE28 |
40.18±4.7 |
27.86±1.5 |
VPE38 |
27.08±3.5 |
8.65±1.2 |
VPE-M1 |
43.93±2.1 |
27.89±1.6 |
VPE-M2 |
60.82±1.8 |
11.43±1.5 |
VPE-M3 |
66.99±1.7 |
29.76±4.4 |
VPE-AM |
54.61±4.7 |
27.01±1.7 |
注: 结果表示为平均值±标准偏差(n=3),同一列不同字母表示存在统计学显著差异(P<0.05)。
Notes: Results are expressed as Mean ± Standard deviation (n=3), and different letters in the same column indicate statistically significant differences (P<0.05).
本研究通过对实验室纯培养和胆盐胁迫下来源于淡水产品不同毒力基因型的VP单个及混合菌株生物被膜形成过程中的差异进行研究,以结晶紫染色法和CCK-8法检测生物被膜形成量和细胞活力,利用CLSM对被膜结构进行可视化,最后通过对胞外多糖和胞外蛋白的定量分析以整体反映胆盐处理对于淡水产品中VP生物被膜形成特征的影响。研究表明,含有tdh基因的菌株无论是纯培养还是胆盐胁迫条件下,都能够更好地应对多变的环境,从而能够更好地生存、定殖,含有tdh基因的菌株在生物被膜形成过程中相比于不含tdh基因的菌株更能对胆盐信号接收做出快速响应。刘冰
菌株的生物被膜形成受多方面因素(细菌种类、毒力基因、环境条件)影响,许多学者对环境条件进行研究,姜黄素介导的光动力灭活对VP的感染、定殖及生物被膜形成具有阻碍作
已有许多研
因此,本研究通过对淡水产品来源的VP在纯培养条件及胆盐胁迫下的单个及种内混合生物被膜形成过程进行深入探究,揭示了单菌与混合菌株之间的被膜异质性及含有tdh基因的菌株对于胆盐环境的响应。这些研究成果为复杂混合生物被膜的形成、清除和控制贡献了新的思路,同时为食源性致病菌的风险评估提供了理论支持,进一步为食品安全和人体健康领域提供了重要的数据基础和实验依据,对于相关领域的研究和实践具有一定的指导意义和应用前景。
利益冲突
作者声明本文无利益冲突
参考文献
古小莉, 徐瑞文, 李惠青, 等. 广东沿海养殖牡蛎中副溶血性弧菌的污染状况、毒力基因及耐药性分析[J]. 海洋环境科学, 2022, 41(6): 865-871. [百度学术]
GU X L, XU R W, LI H Q, et al. Analysis of contamination, virulence genes and antimicrobial resistance of Vibrio parahaemolyticus in cultured oysters from the coast in Guangdong province[J]. Marine Environmental Science, 2022, 41(6): 865-871. [百度学术]
CHEN H H, DONG S L, YAN Y, et al. Prevalence and population analysis of Vibrio parahaemolyticus isolated from freshwater fish in Zhejiang Province, China[J]. Foodborne Pathogens and Disease, 2021, 18(2): 139-146. [百度学术]
LEI T, JIANG F F, HE M, et al. Prevalence, virulence, antimicrobial resistance, and molecular characterization of fluoroquinolone resistance of Vibrio parahaemolyticus from different types of food samples in China[J]. International Journal of Food Microbiology, 2020, 317: 108461. [百度学术]
TENG L, ZOU G, ZHOU Y, et al. Phage controlling method against novel freshwater-derived Vibrio parahaemolyticus in ready-to-eat crayfish (Procambarus clarkii)[J]. Food Research International, 2022, 162: 111986. [百度学术]
O'BOYLE N, BOYD A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type Ⅲ secretion systems of Vibrio parahaemolyticus[J]. Frontiers in Cellular and Infection Microbiology, 2014, 3: 114. [百度学术]
ZHANG L L, KRACHLER A M, BROBERG C A, et al. Type Ⅲ effector VopC mediates invasion for Vibrio species[J]. Cell Reports, 2012, 1(5): 453-460. [百度学术]
BROBERG C A, CALDER T J, ORTH K. Vibrio parahaemolyticus cell biology and pathogenicity determinants[J]. Microbes and Infection, 2011, 13(12/13): 992-1001. [百度学术]
CECCARELLI D, HASAN N A, HUQ A, et al. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors[J]. Frontiers in Cellular and Infection Microbiology, 2013, 3: 97. [百度学术]
RITCHIE J M, RUI H P, ZHOU X H, et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea[J]. PLoS Pathogens, 2012, 8(3): e1002593. [百度学术]
HIYOSHI H, KODAMA T, IIDA T, et al. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice[J]. Infection and Immunity, 2010, 78(4): 1772-1780. [百度学术]
MATZ C, NOURI B, MCCARTER L, et al. Acquired type Ⅲ secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists[J]. PLoS One, 2011, 6(5): e20275. [百度学术]
IZUTSU K, KUROKAWA K, TASHIRO K, et al. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains[J]. Infection and Immunity, 2008, 76(3): 1016-1023. [百度学术]
RIVERA-CANCEL G, ORTH K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus[J]. Gut Microbes, 2017, 8(4): 366-373. [百度学术]
GOTOH K, KODAMA T, HIYOSHI H, et al. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants[J]. PLoS One, 2010, 5(10): e13365. [百度学术]
YILDIZ F H, VISICK K L. Vibrio biofilms: so much the same yet so different[J]. Trends in Microbiology, 2009, 17(3): 109-118. [百度学术]
STEWART B J, MCCARTER L L. Lateral flagellar gene system of Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2003, 185(15): 4508-4518. [百度学术]
BROWN H L, HANMAN K, REUTER M, et al. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment[J]. Frontiers in Microbiology, 2015, 6: 699. [百度学术]
OPHIR T, GUTNICK D L. A role for exopolysaccharides in the protection of microorganisms from desiccation[J]. Applied and Environmental Microbiology, 1994, 60(2): 740-745. [百度学术]
COLVIN K M, GORDON V D, MURAKAMI K, et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa[J]. Plos Pathogens, 2011, 7(1): e1001264. [百度学术]
CUGINI C, SHANMUGAM M, LANDGE N, et al. The role of exopolysaccharides in oral biofilms[J]. Journal of Dental Research, 2019, 98(7): 739-745. [百度学术]
HOBLEY L, HARKINS C, MACPHEE C E, et al. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes[J]. FEMS Microbiology Reviews, 2015, 39(5): 649-669. [百度学术]
PARK J H, LEE B, JO Y, et al. Role of extracellular matrix protein CabA in resistance of Vibrio vulnificus biofilms to decontamination strategies[J]. International Journal of Food Microbiology, 2016, 236: 123-129. [百度学术]
LI W, WANG J J, QIAN H, et al. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2020, 11: 813. [百度学术]
BOWLER P G. Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections[J]. Journal of Wound Care, 2018, 27(5): 273-277. [百度学术]
BERNBOM N, VOGEL B F, GRAM L. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation[J]. International Journal of Food Microbiology, 2011, 147(1): 69-73. [百度学术]
GUZMÁN-SOTO I, MCTIERNAN C, GONZALEZ-GOMEZ M, et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models[J]. Iscience, 2021, 24(5): 102443. [百度学术]
AHMED H A, EL BAYOMI R M, HUSSEIN M A, et al. Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans[J]. International Journal of Food Microbiology, 2018, 274: 31-37. [百度学术]
CHEN L, QIU Y, TANG H, et al. ToxR is required for biofilm formation and motility of Vibrio Parahaemolyticus[J]. Biomedical and Environmental Sciences, 2018, 31(11): 848-850. [百度学术]
PARIJS I, STEENACKERS H P. Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms[J]. The ISME Journal, 2018, 12(8): 2061-2075. [百度学术]
王克波, 赵金山, 刘丹茹, 等. 2014-2016年山东省淡水产品中致病性弧菌的污染状况[J]. 现代预防医学, 2017, 44(16): 2924-2927. [百度学术]
WANG K B, ZHAO J S, LIU D R, et al. Pollution of pathogenic vibrio in fresh water products in Shandong Province between 2014 and 2016[J]. Modern Preventive Medicine, 2017, 44(16): 2924-2927. [百度学术]
裴晓燕, 余波, 张秀丽, 等. 中国内陆6省(自治区)淡水鱼养殖、销售和餐饮环节常见嗜盐性弧菌污染调查[J]. 中国食品卫生杂志, 2016, 28(1): 79-83. [百度学术]
PEI X Y, YU B, ZHANG X L, et al. Monitoring of halophilic Vibrio spp. from farming, saling and catering of freshwater fish in inland cities[J]. Chinese Journal of Food Hygiene, 2016, 28(1): 79-83. [百度学术]
LIU B X, LIU H Q, PAN Y J, et al. Comparison of the effects of environmental parameters on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses[J]. Frontiers in Microbiology, 2016, 7: 994. [百度学术]
赵伟. 胆盐胁迫下副溶血性弧菌的异质性研究[D]. 上海: 上海海洋大学, 2022. [百度学术]
ZHAO W. Study on the heterogeneity of Vibrio parahaemolyticus under bile salts stress[D]. Shanghai: Shanghai Ocean University, 2022. [百度学术]
TAN L J, LI H H, CHEN B W, et al. Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation[J]. Food Control, 2021, 125: 107983. [百度学术]
LI L, LU B B, FAN Q K, et al. Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P(DMAEMA-co-PEGMA))16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin[J]. RSC Advances, 2016, 6(66): 61630-61640. [百度学术]
TAN L, ZHAO F, HAN Q, et al. High correlation between structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2018, 9: 1881. [百度学术]
宋雪迎. 温度影响副溶血性弧菌生物被膜形成的初步机理研究[D]. 上海: 上海海洋大学, 2017. [百度学术]
SONG X Y. Preliminary mechanism of temperature on biofilm formation by Vibrio parahaemolyticus[D]. Shanghai: Shanghai Ocean University, 2017. [百度学术]
刘冰宣. 水产品中副溶血性弧菌生长异质性的研究[D]. 上海: 上海海洋大学, 2017. [百度学术]
LIU B X. On the study of the growth variability of Vibrio parahaemolyticus in aquatic product[D]. Shanghai: Shanghai Ocean University, 2017. [百度学术]
王扬眉. 人工模拟胃液下副溶血性弧菌的生长异质性研究[D]. 上海: 上海海洋大学, 2020. [百度学术]
WANG Y M. Heterogeneity of Vibrio parahaemolyticus under artificial gastric fluids[D]. Shanghai: Shanghai Ocean University, 2020. [百度学术]
江春铃. 不同毒力基因型副溶血性弧菌混合生物被膜的研究[D]. 上海: 上海海洋大学, 2023. [百度学术]
JIANG C L. Research of mixed biofilms of Vibrio parahaemolyticus of different virulence genotypes[D]. Shanghai: Shanghai Ocean University, 2023. [百度学术]
CHEN B W, HUANG J M, LI H H, et al. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation[J]. Food Control, 2020, 113: 107181. [百度学术]
LI Y F, TAN L, GUO L X, et al. Acidic electrolyzed water more effectively breaks down mature Vibrio parahaemolyticus biofilm than DNase I[J]. Food Control, 2020, 117: 107312. [百度学术]
SONG X Y, MA Y J, FU J J, et al. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation[J]. Food Control, 2017, 73: 485-491. [百度学术]
SVENSSON S L, PRYJMA M, GAYNOR E C. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni[J]. PLoS One, 2014, 9(8): e106063. [百度学术]
PROUTY A M, SCHWESINGER W H, GUNN J S. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp[J]. Infection and Immunity, 2002, 70(5): 2640-2649. [百度学术]
CHEN K M, CHIANG M K, WANG M L, et al. The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation[J]. Microbial Pathogenesis, 2014, 77: 89-99. [百度学术]
董旭日, 柴旭锋, 檀玲, 等. 副溶血性弧菌-霍乱弧菌混合生物被膜形成过程研究[J]. 微生物学报, 2018, 58(10): 1808-1816. [百度学术]
DONG X R, CHAI X F, TAN L, et al. Dynamic biofilm forming process of Vibrio parahaemolyticus and Vibrio cholera[J]. Acta Microbiologica Sinica, 2018, 58(10): 1808-1816. [百度学术]
DING X S, ZHAO B, AN Q, et al. Role of extracellular polymeric substances in biofilm formation by Pseudomonas stutzeri strain XL-2[J]. Applied Microbiology and Biotechnology, 2019, 103(21/22): 9169-9180. [百度学术]